Spectral Library and Discrimination Analysis of Indian Urban Materials

In this paper, we present a spectral library of urban materials and its detailed spectral analysis. The primary focus of the research is spectral study of the local urban materials and their discrimination using field signatures. Further, we develop an algorithm for identifying the most important wa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Indian Society of Remote Sensing 2019-05, Vol.47 (5), p.867-877
Hauptverfasser: Deshpande, Shailesh Shankar, Inamdar, Arun B., Vin, Harrick M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 877
container_issue 5
container_start_page 867
container_title Journal of the Indian Society of Remote Sensing
container_volume 47
creator Deshpande, Shailesh Shankar
Inamdar, Arun B.
Vin, Harrick M.
description In this paper, we present a spectral library of urban materials and its detailed spectral analysis. The primary focus of the research is spectral study of the local urban materials and their discrimination using field signatures. Further, we develop an algorithm for identifying the most important wavelength range, and its distribution. Instead of common analysis methods which focus on single wavelength, we focus on wavelength range as it is difficult for urban material to find out single diagnostic wavelength. Novelty of our algorithm is twofold: first we use Leodoit–Wolf covariance estimator for improving accuracy, and second we introduce two new metrics based on Bhattacharyya distance. The spectral discrimination analysis found that the significant wavelength ranges for discriminating urban classes are spread all over the spectrum with slight bias for visible range. Though it is challenging to discriminate materials belonging to the same class, for example, different types of concrete pavements, the broad-level classes such as soil, urban vegetation, metal roofs and concrete are well separable. The confusion between bright soil and concrete surfaces is difficult to overcome spectrally. The developed spectral library is available at OGC compatible website splibtarang.com/index.php.
doi_str_mv 10.1007/s12524-019-00942-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2215568033</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2215568033</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-9df4ee5528d81280f0708d00f9a4817025acc540170b9b764979dd3d85f9c6e13</originalsourceid><addsrcrecordid>eNp9UMFKAzEUDKJgrf6Ap4Dn6Es2ySbHUm0tVDxowVvIJllJqbs12R7690ZX8OblveExM8wbhK4p3FKA-i5TJhgnQDUB0JwReYImoGtOKgB5WjATgkgJb-foIudtOXJB2QQtXvbBDcnu8Do2yaYjtp3H9zG7FD9iZ4fYd3jW2d0xx4z7Fq86H22HN6kp88kOIUW7y5forC0rXP3uKdosHl7nj2T9vFzNZ2viKqoHon3LQxCCKa8oU9BCDcoDtNpyResS0jonOBTY6KaWXNfa-8or0WonA62m6Gb03af-8xDyYLb9IZV42TBGhZAKqqqw2Mhyqc85hdbsyzflOUPBfPdlxr5M6cv89GVkEVWjKBdy9x7Sn_U_qi853GxY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2215568033</pqid></control><display><type>article</type><title>Spectral Library and Discrimination Analysis of Indian Urban Materials</title><source>SpringerLink Journals - AutoHoldings</source><creator>Deshpande, Shailesh Shankar ; Inamdar, Arun B. ; Vin, Harrick M.</creator><creatorcontrib>Deshpande, Shailesh Shankar ; Inamdar, Arun B. ; Vin, Harrick M.</creatorcontrib><description>In this paper, we present a spectral library of urban materials and its detailed spectral analysis. The primary focus of the research is spectral study of the local urban materials and their discrimination using field signatures. Further, we develop an algorithm for identifying the most important wavelength range, and its distribution. Instead of common analysis methods which focus on single wavelength, we focus on wavelength range as it is difficult for urban material to find out single diagnostic wavelength. Novelty of our algorithm is twofold: first we use Leodoit–Wolf covariance estimator for improving accuracy, and second we introduce two new metrics based on Bhattacharyya distance. The spectral discrimination analysis found that the significant wavelength ranges for discriminating urban classes are spread all over the spectrum with slight bias for visible range. Though it is challenging to discriminate materials belonging to the same class, for example, different types of concrete pavements, the broad-level classes such as soil, urban vegetation, metal roofs and concrete are well separable. The confusion between bright soil and concrete surfaces is difficult to overcome spectrally. The developed spectral library is available at OGC compatible website splibtarang.com/index.php.</description><identifier>ISSN: 0255-660X</identifier><identifier>EISSN: 0974-3006</identifier><identifier>DOI: 10.1007/s12524-019-00942-6</identifier><language>eng</language><publisher>New Delhi: Springer India</publisher><subject>Algorithms ; Concrete pavements ; Covariance ; Diagnostic systems ; Discrimination ; Earth and Environmental Science ; Earth Sciences ; Libraries ; Remote Sensing/Photogrammetry ; Research Article ; Roofs ; Soils ; Spectra ; Spectral analysis ; Urban areas ; Websites</subject><ispartof>Journal of the Indian Society of Remote Sensing, 2019-05, Vol.47 (5), p.867-877</ispartof><rights>Indian Society of Remote Sensing 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-9df4ee5528d81280f0708d00f9a4817025acc540170b9b764979dd3d85f9c6e13</citedby><cites>FETCH-LOGICAL-c319t-9df4ee5528d81280f0708d00f9a4817025acc540170b9b764979dd3d85f9c6e13</cites><orcidid>0000-0001-8758-2557</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12524-019-00942-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12524-019-00942-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Deshpande, Shailesh Shankar</creatorcontrib><creatorcontrib>Inamdar, Arun B.</creatorcontrib><creatorcontrib>Vin, Harrick M.</creatorcontrib><title>Spectral Library and Discrimination Analysis of Indian Urban Materials</title><title>Journal of the Indian Society of Remote Sensing</title><addtitle>J Indian Soc Remote Sens</addtitle><description>In this paper, we present a spectral library of urban materials and its detailed spectral analysis. The primary focus of the research is spectral study of the local urban materials and their discrimination using field signatures. Further, we develop an algorithm for identifying the most important wavelength range, and its distribution. Instead of common analysis methods which focus on single wavelength, we focus on wavelength range as it is difficult for urban material to find out single diagnostic wavelength. Novelty of our algorithm is twofold: first we use Leodoit–Wolf covariance estimator for improving accuracy, and second we introduce two new metrics based on Bhattacharyya distance. The spectral discrimination analysis found that the significant wavelength ranges for discriminating urban classes are spread all over the spectrum with slight bias for visible range. Though it is challenging to discriminate materials belonging to the same class, for example, different types of concrete pavements, the broad-level classes such as soil, urban vegetation, metal roofs and concrete are well separable. The confusion between bright soil and concrete surfaces is difficult to overcome spectrally. The developed spectral library is available at OGC compatible website splibtarang.com/index.php.</description><subject>Algorithms</subject><subject>Concrete pavements</subject><subject>Covariance</subject><subject>Diagnostic systems</subject><subject>Discrimination</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Libraries</subject><subject>Remote Sensing/Photogrammetry</subject><subject>Research Article</subject><subject>Roofs</subject><subject>Soils</subject><subject>Spectra</subject><subject>Spectral analysis</subject><subject>Urban areas</subject><subject>Websites</subject><issn>0255-660X</issn><issn>0974-3006</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9UMFKAzEUDKJgrf6Ap4Dn6Es2ySbHUm0tVDxowVvIJllJqbs12R7690ZX8OblveExM8wbhK4p3FKA-i5TJhgnQDUB0JwReYImoGtOKgB5WjATgkgJb-foIudtOXJB2QQtXvbBDcnu8Do2yaYjtp3H9zG7FD9iZ4fYd3jW2d0xx4z7Fq86H22HN6kp88kOIUW7y5forC0rXP3uKdosHl7nj2T9vFzNZ2viKqoHon3LQxCCKa8oU9BCDcoDtNpyResS0jonOBTY6KaWXNfa-8or0WonA62m6Gb03af-8xDyYLb9IZV42TBGhZAKqqqw2Mhyqc85hdbsyzflOUPBfPdlxr5M6cv89GVkEVWjKBdy9x7Sn_U_qi853GxY</recordid><startdate>20190501</startdate><enddate>20190501</enddate><creator>Deshpande, Shailesh Shankar</creator><creator>Inamdar, Arun B.</creator><creator>Vin, Harrick M.</creator><general>Springer India</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-8758-2557</orcidid></search><sort><creationdate>20190501</creationdate><title>Spectral Library and Discrimination Analysis of Indian Urban Materials</title><author>Deshpande, Shailesh Shankar ; Inamdar, Arun B. ; Vin, Harrick M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-9df4ee5528d81280f0708d00f9a4817025acc540170b9b764979dd3d85f9c6e13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Concrete pavements</topic><topic>Covariance</topic><topic>Diagnostic systems</topic><topic>Discrimination</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Libraries</topic><topic>Remote Sensing/Photogrammetry</topic><topic>Research Article</topic><topic>Roofs</topic><topic>Soils</topic><topic>Spectra</topic><topic>Spectral analysis</topic><topic>Urban areas</topic><topic>Websites</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deshpande, Shailesh Shankar</creatorcontrib><creatorcontrib>Inamdar, Arun B.</creatorcontrib><creatorcontrib>Vin, Harrick M.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of the Indian Society of Remote Sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Deshpande, Shailesh Shankar</au><au>Inamdar, Arun B.</au><au>Vin, Harrick M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spectral Library and Discrimination Analysis of Indian Urban Materials</atitle><jtitle>Journal of the Indian Society of Remote Sensing</jtitle><stitle>J Indian Soc Remote Sens</stitle><date>2019-05-01</date><risdate>2019</risdate><volume>47</volume><issue>5</issue><spage>867</spage><epage>877</epage><pages>867-877</pages><issn>0255-660X</issn><eissn>0974-3006</eissn><abstract>In this paper, we present a spectral library of urban materials and its detailed spectral analysis. The primary focus of the research is spectral study of the local urban materials and their discrimination using field signatures. Further, we develop an algorithm for identifying the most important wavelength range, and its distribution. Instead of common analysis methods which focus on single wavelength, we focus on wavelength range as it is difficult for urban material to find out single diagnostic wavelength. Novelty of our algorithm is twofold: first we use Leodoit–Wolf covariance estimator for improving accuracy, and second we introduce two new metrics based on Bhattacharyya distance. The spectral discrimination analysis found that the significant wavelength ranges for discriminating urban classes are spread all over the spectrum with slight bias for visible range. Though it is challenging to discriminate materials belonging to the same class, for example, different types of concrete pavements, the broad-level classes such as soil, urban vegetation, metal roofs and concrete are well separable. The confusion between bright soil and concrete surfaces is difficult to overcome spectrally. The developed spectral library is available at OGC compatible website splibtarang.com/index.php.</abstract><cop>New Delhi</cop><pub>Springer India</pub><doi>10.1007/s12524-019-00942-6</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-8758-2557</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0255-660X
ispartof Journal of the Indian Society of Remote Sensing, 2019-05, Vol.47 (5), p.867-877
issn 0255-660X
0974-3006
language eng
recordid cdi_proquest_journals_2215568033
source SpringerLink Journals - AutoHoldings
subjects Algorithms
Concrete pavements
Covariance
Diagnostic systems
Discrimination
Earth and Environmental Science
Earth Sciences
Libraries
Remote Sensing/Photogrammetry
Research Article
Roofs
Soils
Spectra
Spectral analysis
Urban areas
Websites
title Spectral Library and Discrimination Analysis of Indian Urban Materials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T13%3A57%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spectral%20Library%20and%20Discrimination%20Analysis%20of%20Indian%20Urban%20Materials&rft.jtitle=Journal%20of%20the%20Indian%20Society%20of%20Remote%20Sensing&rft.au=Deshpande,%20Shailesh%20Shankar&rft.date=2019-05-01&rft.volume=47&rft.issue=5&rft.spage=867&rft.epage=877&rft.pages=867-877&rft.issn=0255-660X&rft.eissn=0974-3006&rft_id=info:doi/10.1007/s12524-019-00942-6&rft_dat=%3Cproquest_cross%3E2215568033%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2215568033&rft_id=info:pmid/&rfr_iscdi=true