Modelagem e propriedades termodinâmicas da secagem de fatias de acuri
Resumo O acuri é uma fruta pouco explorada industrialmente, mas com grandes perspectivas e possibilidades de uso. Para tanto, torna-se necessário reduzir o seu teor de água, aumentando então a sua vida útil, o que possibilitará sua utilização em mercados distantes dos locais de produção. Nesse senti...
Gespeichert in:
Veröffentlicht in: | Brazilian Journal of Food Technology 2019, Vol.22, p.1-12 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng ; por |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | Brazilian Journal of Food Technology |
container_volume | 22 |
creator | Santos, Dyego da Costa Leite, Daniela Dantas de Farias Lisbôa, Jemima Ferreira Ferreira, João Paulo de Lima Santos, Francislaine Suelia dos Lima, Thalis Leandro Bezerra de Figueiredo, Rossana Maria Feitosa de Costa, Tiago Nascimento da |
description | Resumo O acuri é uma fruta pouco explorada industrialmente, mas com grandes perspectivas e possibilidades de uso. Para tanto, torna-se necessário reduzir o seu teor de água, aumentando então a sua vida útil, o que possibilitará sua utilização em mercados distantes dos locais de produção. Nesse sentido, objetivou-se secar fatias de acuri, com espessura de aproximadamente 4,07 mm, nas temperaturas de 60, 70, 80 e 90 °C, ajustar diferentes modelos matemáticos aos dados experimentais e determinar os coeficientes de difusão, a energia de ativação e as propriedades termodinâmicas. Observou-se que o aumento de temperatura de 30°C reduziu em 36% o tempo total de processo, sendo obtidas taxas de secagem máximas de 1,22; 1,88; 2,16, e 2,45 kg de água kg de matéria seca min-1 nas temperaturas de 60, 70, 80 e 90 °C, respectivamente. Dentre os modelos matemáticos testados, o modelo logarítmico apresentou os melhores parâmetros de ajustes aos dados experimentais e foi selecionado como o mais adequado para representar o fenômeno investigado. Os coeficientes de difusão efetivos aumentaram com o incremento de temperatura, apresentando-se na ordem de 10-10 m2 s-1 , e sua dependência com a temperatura foi descrita pela Equação de Arrhenius, que apresentou energia de ativação de 17,66 kJ mol-1 . Os valores de entalpia e entropia reduziram com a elevação da temperatura de secagem, enquanto que a energia livre de Gibbs foi ampliada na faixa de temperatura avaliada.
Abstract Acuri is a fruit little explored industrially with great perspectives and possibilities for use, but for this to occur the moisture content must be reduced, thus increasing its shelf life and enabling it to be used in markets far from its place of production. Hence the objective here was to dry acuri slices with a thickness of approximately 4.07 mm at temperatures of 60, 70, 80 and 90 °C, adjust different mathematical models to the experimental data and determine the diffusion coefficients, the activation energy and the thermodynamic properties. It was observed that a temperature increase of 30 °C reduced the total process time by 36%, with maximum drying rates of 1.22; 1.88; 2.16 and 2.45 kg of water kg of dry matter min -1 at the temperatures of 60, 70, 80 and 90 °C, respectively. Of the mathematical models tested, the Logarithmic model presented the best fit to the experimental data and was selected as the most adequate model to represent the phenomenon investigated. The effective diffusion coefficients i |
doi_str_mv | 10.1590/1981-6723.03118 |
format | Article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2215488685</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_8f421e7b341446ef97b11dbc2106fe0a</doaj_id><sourcerecordid>2215488685</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2848-3eddb8c1f9802fa99c5a5be25b9a5140824ac765b1a7ba032c25cc75eff853733</originalsourceid><addsrcrecordid>eNpNkE9PAjEQxRujiQQ5e93EM9Dpn93u0RBREowXPTfTdkqWAIvtcvDr-FX8Yi5giKeZvLy8N_Nj7B74BHTNp1AbGJeVkBMuAcwVG1yU63_7LRvl3DiutIRS6nrA5q9toA2uaFtQsU_tPjUUMFAuOkrbNjS7n-9t4zEXAYtM_uQMVETsmqNIBfpDau7YTcRNptHfHLKP-dP77GW8fHtezB6XYy-MMmNJITjjIdaGi4h17TVqR0K7GjUoboRCX5XaAVYOuRReaO8rTTEaLSsph2xxzg0trm1_7BbTl22xsSehTSuLqWv8hqyJSgBVTipQqqRYVw4gOC-Al5E49lkP56z-7c8D5c6u20Pa9edbIUArY8q-dMimZ5dPbc6J4qUVuD2yt0e69kjXntjLX-redZw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2215488685</pqid></control><display><type>article</type><title>Modelagem e propriedades termodinâmicas da secagem de fatias de acuri</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Santos, Dyego da Costa ; Leite, Daniela Dantas de Farias ; Lisbôa, Jemima Ferreira ; Ferreira, João Paulo de Lima ; Santos, Francislaine Suelia dos ; Lima, Thalis Leandro Bezerra de ; Figueiredo, Rossana Maria Feitosa de ; Costa, Tiago Nascimento da</creator><creatorcontrib>Santos, Dyego da Costa ; Leite, Daniela Dantas de Farias ; Lisbôa, Jemima Ferreira ; Ferreira, João Paulo de Lima ; Santos, Francislaine Suelia dos ; Lima, Thalis Leandro Bezerra de ; Figueiredo, Rossana Maria Feitosa de ; Costa, Tiago Nascimento da</creatorcontrib><description>Resumo O acuri é uma fruta pouco explorada industrialmente, mas com grandes perspectivas e possibilidades de uso. Para tanto, torna-se necessário reduzir o seu teor de água, aumentando então a sua vida útil, o que possibilitará sua utilização em mercados distantes dos locais de produção. Nesse sentido, objetivou-se secar fatias de acuri, com espessura de aproximadamente 4,07 mm, nas temperaturas de 60, 70, 80 e 90 °C, ajustar diferentes modelos matemáticos aos dados experimentais e determinar os coeficientes de difusão, a energia de ativação e as propriedades termodinâmicas. Observou-se que o aumento de temperatura de 30°C reduziu em 36% o tempo total de processo, sendo obtidas taxas de secagem máximas de 1,22; 1,88; 2,16, e 2,45 kg de água kg de matéria seca min-1 nas temperaturas de 60, 70, 80 e 90 °C, respectivamente. Dentre os modelos matemáticos testados, o modelo logarítmico apresentou os melhores parâmetros de ajustes aos dados experimentais e foi selecionado como o mais adequado para representar o fenômeno investigado. Os coeficientes de difusão efetivos aumentaram com o incremento de temperatura, apresentando-se na ordem de 10-10 m2 s-1 , e sua dependência com a temperatura foi descrita pela Equação de Arrhenius, que apresentou energia de ativação de 17,66 kJ mol-1 . Os valores de entalpia e entropia reduziram com a elevação da temperatura de secagem, enquanto que a energia livre de Gibbs foi ampliada na faixa de temperatura avaliada.
Abstract Acuri is a fruit little explored industrially with great perspectives and possibilities for use, but for this to occur the moisture content must be reduced, thus increasing its shelf life and enabling it to be used in markets far from its place of production. Hence the objective here was to dry acuri slices with a thickness of approximately 4.07 mm at temperatures of 60, 70, 80 and 90 °C, adjust different mathematical models to the experimental data and determine the diffusion coefficients, the activation energy and the thermodynamic properties. It was observed that a temperature increase of 30 °C reduced the total process time by 36%, with maximum drying rates of 1.22; 1.88; 2.16 and 2.45 kg of water kg of dry matter min -1 at the temperatures of 60, 70, 80 and 90 °C, respectively. Of the mathematical models tested, the Logarithmic model presented the best fit to the experimental data and was selected as the most adequate model to represent the phenomenon investigated. The effective diffusion coefficients increased with increase in temperature to the order of 10-10 m2 s-1 and the temperature dependence was described by the Arrhenius equation which presented an activation energy of 17.66 kJ mol-1. The enthalpy and entropy values decreased with increase in drying temperature, while Gibbs free energy increased in the temperature range evaluated.</description><identifier>ISSN: 1981-6723</identifier><identifier>ISSN: 1516-7275</identifier><identifier>EISSN: 1981-6723</identifier><identifier>DOI: 10.1590/1981-6723.03118</identifier><language>eng ; por</language><publisher>Campinas: Instituto de Tecnologia de Alimentos (ITAL)</publisher><subject>Activation energy ; Attalea phalerata Mart. ex Spreng ; Dehydration ; Diffusion ; Diffusion coefficient ; Diffusivity ; Dry matter ; Drying ; Enthalpy ; Entropy ; Experimental data ; Free energy ; Fruits ; Gibbs free energy ; Mathematical modeling ; Mathematical models ; Moisture content ; Shelf life ; Temperature dependence ; Temperature effects ; Thermodynamic properties ; Thermodynamics ; Water content</subject><ispartof>Brazilian Journal of Food Technology, 2019, Vol.22, p.1-12</ispartof><rights>2019. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2848-3eddb8c1f9802fa99c5a5be25b9a5140824ac765b1a7ba032c25cc75eff853733</cites><orcidid>0000-0002-4045-5224</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,4010,27900,27901,27902</link.rule.ids></links><search><creatorcontrib>Santos, Dyego da Costa</creatorcontrib><creatorcontrib>Leite, Daniela Dantas de Farias</creatorcontrib><creatorcontrib>Lisbôa, Jemima Ferreira</creatorcontrib><creatorcontrib>Ferreira, João Paulo de Lima</creatorcontrib><creatorcontrib>Santos, Francislaine Suelia dos</creatorcontrib><creatorcontrib>Lima, Thalis Leandro Bezerra de</creatorcontrib><creatorcontrib>Figueiredo, Rossana Maria Feitosa de</creatorcontrib><creatorcontrib>Costa, Tiago Nascimento da</creatorcontrib><title>Modelagem e propriedades termodinâmicas da secagem de fatias de acuri</title><title>Brazilian Journal of Food Technology</title><description>Resumo O acuri é uma fruta pouco explorada industrialmente, mas com grandes perspectivas e possibilidades de uso. Para tanto, torna-se necessário reduzir o seu teor de água, aumentando então a sua vida útil, o que possibilitará sua utilização em mercados distantes dos locais de produção. Nesse sentido, objetivou-se secar fatias de acuri, com espessura de aproximadamente 4,07 mm, nas temperaturas de 60, 70, 80 e 90 °C, ajustar diferentes modelos matemáticos aos dados experimentais e determinar os coeficientes de difusão, a energia de ativação e as propriedades termodinâmicas. Observou-se que o aumento de temperatura de 30°C reduziu em 36% o tempo total de processo, sendo obtidas taxas de secagem máximas de 1,22; 1,88; 2,16, e 2,45 kg de água kg de matéria seca min-1 nas temperaturas de 60, 70, 80 e 90 °C, respectivamente. Dentre os modelos matemáticos testados, o modelo logarítmico apresentou os melhores parâmetros de ajustes aos dados experimentais e foi selecionado como o mais adequado para representar o fenômeno investigado. Os coeficientes de difusão efetivos aumentaram com o incremento de temperatura, apresentando-se na ordem de 10-10 m2 s-1 , e sua dependência com a temperatura foi descrita pela Equação de Arrhenius, que apresentou energia de ativação de 17,66 kJ mol-1 . Os valores de entalpia e entropia reduziram com a elevação da temperatura de secagem, enquanto que a energia livre de Gibbs foi ampliada na faixa de temperatura avaliada.
Abstract Acuri is a fruit little explored industrially with great perspectives and possibilities for use, but for this to occur the moisture content must be reduced, thus increasing its shelf life and enabling it to be used in markets far from its place of production. Hence the objective here was to dry acuri slices with a thickness of approximately 4.07 mm at temperatures of 60, 70, 80 and 90 °C, adjust different mathematical models to the experimental data and determine the diffusion coefficients, the activation energy and the thermodynamic properties. It was observed that a temperature increase of 30 °C reduced the total process time by 36%, with maximum drying rates of 1.22; 1.88; 2.16 and 2.45 kg of water kg of dry matter min -1 at the temperatures of 60, 70, 80 and 90 °C, respectively. Of the mathematical models tested, the Logarithmic model presented the best fit to the experimental data and was selected as the most adequate model to represent the phenomenon investigated. The effective diffusion coefficients increased with increase in temperature to the order of 10-10 m2 s-1 and the temperature dependence was described by the Arrhenius equation which presented an activation energy of 17.66 kJ mol-1. The enthalpy and entropy values decreased with increase in drying temperature, while Gibbs free energy increased in the temperature range evaluated.</description><subject>Activation energy</subject><subject>Attalea phalerata Mart. ex Spreng</subject><subject>Dehydration</subject><subject>Diffusion</subject><subject>Diffusion coefficient</subject><subject>Diffusivity</subject><subject>Dry matter</subject><subject>Drying</subject><subject>Enthalpy</subject><subject>Entropy</subject><subject>Experimental data</subject><subject>Free energy</subject><subject>Fruits</subject><subject>Gibbs free energy</subject><subject>Mathematical modeling</subject><subject>Mathematical models</subject><subject>Moisture content</subject><subject>Shelf life</subject><subject>Temperature dependence</subject><subject>Temperature effects</subject><subject>Thermodynamic properties</subject><subject>Thermodynamics</subject><subject>Water content</subject><issn>1981-6723</issn><issn>1516-7275</issn><issn>1981-6723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><sourceid>DOA</sourceid><recordid>eNpNkE9PAjEQxRujiQQ5e93EM9Dpn93u0RBREowXPTfTdkqWAIvtcvDr-FX8Yi5giKeZvLy8N_Nj7B74BHTNp1AbGJeVkBMuAcwVG1yU63_7LRvl3DiutIRS6nrA5q9toA2uaFtQsU_tPjUUMFAuOkrbNjS7n-9t4zEXAYtM_uQMVETsmqNIBfpDau7YTcRNptHfHLKP-dP77GW8fHtezB6XYy-MMmNJITjjIdaGi4h17TVqR0K7GjUoboRCX5XaAVYOuRReaO8rTTEaLSsph2xxzg0trm1_7BbTl22xsSehTSuLqWv8hqyJSgBVTipQqqRYVw4gOC-Al5E49lkP56z-7c8D5c6u20Pa9edbIUArY8q-dMimZ5dPbc6J4qUVuD2yt0e69kjXntjLX-redZw</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Santos, Dyego da Costa</creator><creator>Leite, Daniela Dantas de Farias</creator><creator>Lisbôa, Jemima Ferreira</creator><creator>Ferreira, João Paulo de Lima</creator><creator>Santos, Francislaine Suelia dos</creator><creator>Lima, Thalis Leandro Bezerra de</creator><creator>Figueiredo, Rossana Maria Feitosa de</creator><creator>Costa, Tiago Nascimento da</creator><general>Instituto de Tecnologia de Alimentos (ITAL)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QR</scope><scope>7RQ</scope><scope>7T7</scope><scope>7U7</scope><scope>7X2</scope><scope>7XB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>CLZPN</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M0K</scope><scope>M2O</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P64</scope><scope>PADUT</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>U9A</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4045-5224</orcidid></search><sort><creationdate>2019</creationdate><title>Modelagem e propriedades termodinâmicas da secagem de fatias de acuri</title><author>Santos, Dyego da Costa ; Leite, Daniela Dantas de Farias ; Lisbôa, Jemima Ferreira ; Ferreira, João Paulo de Lima ; Santos, Francislaine Suelia dos ; Lima, Thalis Leandro Bezerra de ; Figueiredo, Rossana Maria Feitosa de ; Costa, Tiago Nascimento da</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2848-3eddb8c1f9802fa99c5a5be25b9a5140824ac765b1a7ba032c25cc75eff853733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng ; por</language><creationdate>2019</creationdate><topic>Activation energy</topic><topic>Attalea phalerata Mart. ex Spreng</topic><topic>Dehydration</topic><topic>Diffusion</topic><topic>Diffusion coefficient</topic><topic>Diffusivity</topic><topic>Dry matter</topic><topic>Drying</topic><topic>Enthalpy</topic><topic>Entropy</topic><topic>Experimental data</topic><topic>Free energy</topic><topic>Fruits</topic><topic>Gibbs free energy</topic><topic>Mathematical modeling</topic><topic>Mathematical models</topic><topic>Moisture content</topic><topic>Shelf life</topic><topic>Temperature dependence</topic><topic>Temperature effects</topic><topic>Thermodynamic properties</topic><topic>Thermodynamics</topic><topic>Water content</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Santos, Dyego da Costa</creatorcontrib><creatorcontrib>Leite, Daniela Dantas de Farias</creatorcontrib><creatorcontrib>Lisbôa, Jemima Ferreira</creatorcontrib><creatorcontrib>Ferreira, João Paulo de Lima</creatorcontrib><creatorcontrib>Santos, Francislaine Suelia dos</creatorcontrib><creatorcontrib>Lima, Thalis Leandro Bezerra de</creatorcontrib><creatorcontrib>Figueiredo, Rossana Maria Feitosa de</creatorcontrib><creatorcontrib>Costa, Tiago Nascimento da</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Chemoreception Abstracts</collection><collection>Career & Technical Education Database</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>Latin America & Iberia Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Agricultural Science Database</collection><collection>Research Library</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Research Library China</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Brazilian Journal of Food Technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Santos, Dyego da Costa</au><au>Leite, Daniela Dantas de Farias</au><au>Lisbôa, Jemima Ferreira</au><au>Ferreira, João Paulo de Lima</au><au>Santos, Francislaine Suelia dos</au><au>Lima, Thalis Leandro Bezerra de</au><au>Figueiredo, Rossana Maria Feitosa de</au><au>Costa, Tiago Nascimento da</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modelagem e propriedades termodinâmicas da secagem de fatias de acuri</atitle><jtitle>Brazilian Journal of Food Technology</jtitle><date>2019</date><risdate>2019</risdate><volume>22</volume><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>1981-6723</issn><issn>1516-7275</issn><eissn>1981-6723</eissn><abstract>Resumo O acuri é uma fruta pouco explorada industrialmente, mas com grandes perspectivas e possibilidades de uso. Para tanto, torna-se necessário reduzir o seu teor de água, aumentando então a sua vida útil, o que possibilitará sua utilização em mercados distantes dos locais de produção. Nesse sentido, objetivou-se secar fatias de acuri, com espessura de aproximadamente 4,07 mm, nas temperaturas de 60, 70, 80 e 90 °C, ajustar diferentes modelos matemáticos aos dados experimentais e determinar os coeficientes de difusão, a energia de ativação e as propriedades termodinâmicas. Observou-se que o aumento de temperatura de 30°C reduziu em 36% o tempo total de processo, sendo obtidas taxas de secagem máximas de 1,22; 1,88; 2,16, e 2,45 kg de água kg de matéria seca min-1 nas temperaturas de 60, 70, 80 e 90 °C, respectivamente. Dentre os modelos matemáticos testados, o modelo logarítmico apresentou os melhores parâmetros de ajustes aos dados experimentais e foi selecionado como o mais adequado para representar o fenômeno investigado. Os coeficientes de difusão efetivos aumentaram com o incremento de temperatura, apresentando-se na ordem de 10-10 m2 s-1 , e sua dependência com a temperatura foi descrita pela Equação de Arrhenius, que apresentou energia de ativação de 17,66 kJ mol-1 . Os valores de entalpia e entropia reduziram com a elevação da temperatura de secagem, enquanto que a energia livre de Gibbs foi ampliada na faixa de temperatura avaliada.
Abstract Acuri is a fruit little explored industrially with great perspectives and possibilities for use, but for this to occur the moisture content must be reduced, thus increasing its shelf life and enabling it to be used in markets far from its place of production. Hence the objective here was to dry acuri slices with a thickness of approximately 4.07 mm at temperatures of 60, 70, 80 and 90 °C, adjust different mathematical models to the experimental data and determine the diffusion coefficients, the activation energy and the thermodynamic properties. It was observed that a temperature increase of 30 °C reduced the total process time by 36%, with maximum drying rates of 1.22; 1.88; 2.16 and 2.45 kg of water kg of dry matter min -1 at the temperatures of 60, 70, 80 and 90 °C, respectively. Of the mathematical models tested, the Logarithmic model presented the best fit to the experimental data and was selected as the most adequate model to represent the phenomenon investigated. The effective diffusion coefficients increased with increase in temperature to the order of 10-10 m2 s-1 and the temperature dependence was described by the Arrhenius equation which presented an activation energy of 17.66 kJ mol-1. The enthalpy and entropy values decreased with increase in drying temperature, while Gibbs free energy increased in the temperature range evaluated.</abstract><cop>Campinas</cop><pub>Instituto de Tecnologia de Alimentos (ITAL)</pub><doi>10.1590/1981-6723.03118</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-4045-5224</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1981-6723 |
ispartof | Brazilian Journal of Food Technology, 2019, Vol.22, p.1-12 |
issn | 1981-6723 1516-7275 1981-6723 |
language | eng ; por |
recordid | cdi_proquest_journals_2215488685 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Activation energy Attalea phalerata Mart. ex Spreng Dehydration Diffusion Diffusion coefficient Diffusivity Dry matter Drying Enthalpy Entropy Experimental data Free energy Fruits Gibbs free energy Mathematical modeling Mathematical models Moisture content Shelf life Temperature dependence Temperature effects Thermodynamic properties Thermodynamics Water content |
title | Modelagem e propriedades termodinâmicas da secagem de fatias de acuri |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T21%3A42%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modelagem%20e%20propriedades%20termodin%C3%A2micas%20da%20secagem%20de%20fatias%20de%20acuri&rft.jtitle=Brazilian%20Journal%20of%20Food%20Technology&rft.au=Santos,%20Dyego%20da%20Costa&rft.date=2019&rft.volume=22&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=1981-6723&rft.eissn=1981-6723&rft_id=info:doi/10.1590/1981-6723.03118&rft_dat=%3Cproquest_doaj_%3E2215488685%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2215488685&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_8f421e7b341446ef97b11dbc2106fe0a&rfr_iscdi=true |