An Integrated Isotope-Geochemical Approach to Characterize a Medium Enthalpy Geothermal System in India
The Manuguru geothermal area, situated in the Telangana state, is one of the least explored geothermal fields in India. In this study, the chemical characteristics of the groundwater (thermal and non-thermal waters) are investigated to elucidate the source of the solutes dissolved in the water and t...
Gespeichert in:
Veröffentlicht in: | Aquatic geochemistry 2019-04, Vol.25 (1-2), p.63-89 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 89 |
---|---|
container_issue | 1-2 |
container_start_page | 63 |
container_title | Aquatic geochemistry |
container_volume | 25 |
creator | Chatterjee, Sitangshu Sinha, Uday K. Biswal, Bishnu P. Jaryal, Ajay Jain, Pankaj K. Patbhaje, Suraj Dash, Ashutosh |
description | The Manuguru geothermal area, situated in the Telangana state, is one of the least explored geothermal fields in India. In this study, the chemical characteristics of the groundwater (thermal and non-thermal waters) are investigated to elucidate the source of the solutes dissolved in the water and to determine the approximate residence time of the thermal waters. The major hydrogeochemical processes controlling the groundwater geochemistry have been deciphered using multivariate statistical analysis, conventional graphical plots and geochemical modelling (PHREEQC). Geochemically different groundwater clusters (bicarbonate type, bicarbonate–chloride type and chloride type) can clearly be identified from the chemometric analysis, i.e. PCA and HCA. Thermal waters are mostly Na–HCO
3
type having low EC and TDS compared to non-thermal groundwaters. Silicate weathering and ion exchange mainly contribute to the dissolved ion budget in the groundwater of the study area. The carbon isotopic composition of DIC (δ
13
C) points to silicate weathering with soil CO
2
coming from C
3
type of plants. Stable isotopes (δ
18
O, δ
2
H) data confirm the meteoric origin of the thermal waters with no oxygen-18 shift. The low tritium values of the thermal water samples reveal the long circulation time (> 50 years) of the recharging waters. Radiocarbon dating (
14
C) shows that the approximate residence time of the thermal waters ranges from 9952 to 18,663 year BP (before present). |
doi_str_mv | 10.1007/s10498-019-09352-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2215418244</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2215418244</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-57049d6c18a2f22d846e146448a7f66e438e2f0fc011d6d32369c7e6c0922e63</originalsourceid><addsrcrecordid>eNp9kD9PwzAQxS0EEqXwBZgsMRt8tuMkY1WVUqmIge6W5VyaVM0fbHdoPz0uRWJjuhve7927R8gj8GfgPH8JwFVZMA4l46XMBDtdkQlkuWSgBFynXRacadDZLbkLYcc5ABd8Qraznq76iFtvI1Z0FYY4jMiWOLgGu9bZPZ2Nox-sa2gc6Lyx3rqIvj0htfQdq_bQ0UUfG7sfjzRhsUHfJerzGCJ2tD3bV629Jze13Qd8-J1TsnldbOZvbP2xXM1na-YklJFlefqj0g4KK2ohqkJpBKWVKmxea41KFihqXruUv9KVFFKXLkfteCkEajklTxfbFPnrgCGa3XDwfbpohIBMQSGUSipxUTk_hOCxNqNvO-uPBrg592kufZrUp_np05wSJC9QSOJ-i_7P-h_qGyy3eIk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2215418244</pqid></control><display><type>article</type><title>An Integrated Isotope-Geochemical Approach to Characterize a Medium Enthalpy Geothermal System in India</title><source>Springer Nature - Complete Springer Journals</source><creator>Chatterjee, Sitangshu ; Sinha, Uday K. ; Biswal, Bishnu P. ; Jaryal, Ajay ; Jain, Pankaj K. ; Patbhaje, Suraj ; Dash, Ashutosh</creator><creatorcontrib>Chatterjee, Sitangshu ; Sinha, Uday K. ; Biswal, Bishnu P. ; Jaryal, Ajay ; Jain, Pankaj K. ; Patbhaje, Suraj ; Dash, Ashutosh</creatorcontrib><description>The Manuguru geothermal area, situated in the Telangana state, is one of the least explored geothermal fields in India. In this study, the chemical characteristics of the groundwater (thermal and non-thermal waters) are investigated to elucidate the source of the solutes dissolved in the water and to determine the approximate residence time of the thermal waters. The major hydrogeochemical processes controlling the groundwater geochemistry have been deciphered using multivariate statistical analysis, conventional graphical plots and geochemical modelling (PHREEQC). Geochemically different groundwater clusters (bicarbonate type, bicarbonate–chloride type and chloride type) can clearly be identified from the chemometric analysis, i.e. PCA and HCA. Thermal waters are mostly Na–HCO
3
type having low EC and TDS compared to non-thermal groundwaters. Silicate weathering and ion exchange mainly contribute to the dissolved ion budget in the groundwater of the study area. The carbon isotopic composition of DIC (δ
13
C) points to silicate weathering with soil CO
2
coming from C
3
type of plants. Stable isotopes (δ
18
O, δ
2
H) data confirm the meteoric origin of the thermal waters with no oxygen-18 shift. The low tritium values of the thermal water samples reveal the long circulation time (> 50 years) of the recharging waters. Radiocarbon dating (
14
C) shows that the approximate residence time of the thermal waters ranges from 9952 to 18,663 year BP (before present).</description><identifier>ISSN: 1380-6165</identifier><identifier>EISSN: 1573-1421</identifier><identifier>DOI: 10.1007/s10498-019-09352-z</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Bicarbonates ; Carbon 14 ; Carbon dioxide ; Chlorides ; Composition ; Earth and Environmental Science ; Earth Sciences ; Enthalpy ; Geochemistry ; Groundwater ; Hydrogeochemistry ; Hydrogeology ; Hydrology/Water Resources ; Hydrothermal fields ; Ion exchange ; Isotopes ; Modelling ; Multivariate statistical analysis ; Organic chemistry ; Original Article ; Radiocarbon dating ; Radiometric dating ; Residence time ; Residence time distribution ; Silicates ; Soil ; Solutes ; Stable isotopes ; Statistical analysis ; Statistical methods ; Thermal water ; Tritium ; Water analysis ; Water circulation ; Water Quality/Water Pollution ; Water sampling ; Weathering</subject><ispartof>Aquatic geochemistry, 2019-04, Vol.25 (1-2), p.63-89</ispartof><rights>Springer Nature B.V. 2019</rights><rights>Aquatic Geochemistry is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-57049d6c18a2f22d846e146448a7f66e438e2f0fc011d6d32369c7e6c0922e63</citedby><cites>FETCH-LOGICAL-c319t-57049d6c18a2f22d846e146448a7f66e438e2f0fc011d6d32369c7e6c0922e63</cites><orcidid>0000-0001-7289-2739</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10498-019-09352-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10498-019-09352-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Chatterjee, Sitangshu</creatorcontrib><creatorcontrib>Sinha, Uday K.</creatorcontrib><creatorcontrib>Biswal, Bishnu P.</creatorcontrib><creatorcontrib>Jaryal, Ajay</creatorcontrib><creatorcontrib>Jain, Pankaj K.</creatorcontrib><creatorcontrib>Patbhaje, Suraj</creatorcontrib><creatorcontrib>Dash, Ashutosh</creatorcontrib><title>An Integrated Isotope-Geochemical Approach to Characterize a Medium Enthalpy Geothermal System in India</title><title>Aquatic geochemistry</title><addtitle>Aquat Geochem</addtitle><description>The Manuguru geothermal area, situated in the Telangana state, is one of the least explored geothermal fields in India. In this study, the chemical characteristics of the groundwater (thermal and non-thermal waters) are investigated to elucidate the source of the solutes dissolved in the water and to determine the approximate residence time of the thermal waters. The major hydrogeochemical processes controlling the groundwater geochemistry have been deciphered using multivariate statistical analysis, conventional graphical plots and geochemical modelling (PHREEQC). Geochemically different groundwater clusters (bicarbonate type, bicarbonate–chloride type and chloride type) can clearly be identified from the chemometric analysis, i.e. PCA and HCA. Thermal waters are mostly Na–HCO
3
type having low EC and TDS compared to non-thermal groundwaters. Silicate weathering and ion exchange mainly contribute to the dissolved ion budget in the groundwater of the study area. The carbon isotopic composition of DIC (δ
13
C) points to silicate weathering with soil CO
2
coming from C
3
type of plants. Stable isotopes (δ
18
O, δ
2
H) data confirm the meteoric origin of the thermal waters with no oxygen-18 shift. The low tritium values of the thermal water samples reveal the long circulation time (> 50 years) of the recharging waters. Radiocarbon dating (
14
C) shows that the approximate residence time of the thermal waters ranges from 9952 to 18,663 year BP (before present).</description><subject>Bicarbonates</subject><subject>Carbon 14</subject><subject>Carbon dioxide</subject><subject>Chlorides</subject><subject>Composition</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Enthalpy</subject><subject>Geochemistry</subject><subject>Groundwater</subject><subject>Hydrogeochemistry</subject><subject>Hydrogeology</subject><subject>Hydrology/Water Resources</subject><subject>Hydrothermal fields</subject><subject>Ion exchange</subject><subject>Isotopes</subject><subject>Modelling</subject><subject>Multivariate statistical analysis</subject><subject>Organic chemistry</subject><subject>Original Article</subject><subject>Radiocarbon dating</subject><subject>Radiometric dating</subject><subject>Residence time</subject><subject>Residence time distribution</subject><subject>Silicates</subject><subject>Soil</subject><subject>Solutes</subject><subject>Stable isotopes</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><subject>Thermal water</subject><subject>Tritium</subject><subject>Water analysis</subject><subject>Water circulation</subject><subject>Water Quality/Water Pollution</subject><subject>Water sampling</subject><subject>Weathering</subject><issn>1380-6165</issn><issn>1573-1421</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kD9PwzAQxS0EEqXwBZgsMRt8tuMkY1WVUqmIge6W5VyaVM0fbHdoPz0uRWJjuhve7927R8gj8GfgPH8JwFVZMA4l46XMBDtdkQlkuWSgBFynXRacadDZLbkLYcc5ABd8Qraznq76iFtvI1Z0FYY4jMiWOLgGu9bZPZ2Nox-sa2gc6Lyx3rqIvj0htfQdq_bQ0UUfG7sfjzRhsUHfJerzGCJ2tD3bV629Jze13Qd8-J1TsnldbOZvbP2xXM1na-YklJFlefqj0g4KK2ohqkJpBKWVKmxea41KFihqXruUv9KVFFKXLkfteCkEajklTxfbFPnrgCGa3XDwfbpohIBMQSGUSipxUTk_hOCxNqNvO-uPBrg592kufZrUp_np05wSJC9QSOJ-i_7P-h_qGyy3eIk</recordid><startdate>20190401</startdate><enddate>20190401</enddate><creator>Chatterjee, Sitangshu</creator><creator>Sinha, Uday K.</creator><creator>Biswal, Bishnu P.</creator><creator>Jaryal, Ajay</creator><creator>Jain, Pankaj K.</creator><creator>Patbhaje, Suraj</creator><creator>Dash, Ashutosh</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>L.G</scope><scope>M2P</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0001-7289-2739</orcidid></search><sort><creationdate>20190401</creationdate><title>An Integrated Isotope-Geochemical Approach to Characterize a Medium Enthalpy Geothermal System in India</title><author>Chatterjee, Sitangshu ; Sinha, Uday K. ; Biswal, Bishnu P. ; Jaryal, Ajay ; Jain, Pankaj K. ; Patbhaje, Suraj ; Dash, Ashutosh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-57049d6c18a2f22d846e146448a7f66e438e2f0fc011d6d32369c7e6c0922e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Bicarbonates</topic><topic>Carbon 14</topic><topic>Carbon dioxide</topic><topic>Chlorides</topic><topic>Composition</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Enthalpy</topic><topic>Geochemistry</topic><topic>Groundwater</topic><topic>Hydrogeochemistry</topic><topic>Hydrogeology</topic><topic>Hydrology/Water Resources</topic><topic>Hydrothermal fields</topic><topic>Ion exchange</topic><topic>Isotopes</topic><topic>Modelling</topic><topic>Multivariate statistical analysis</topic><topic>Organic chemistry</topic><topic>Original Article</topic><topic>Radiocarbon dating</topic><topic>Radiometric dating</topic><topic>Residence time</topic><topic>Residence time distribution</topic><topic>Silicates</topic><topic>Soil</topic><topic>Solutes</topic><topic>Stable isotopes</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><topic>Thermal water</topic><topic>Tritium</topic><topic>Water analysis</topic><topic>Water circulation</topic><topic>Water Quality/Water Pollution</topic><topic>Water sampling</topic><topic>Weathering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chatterjee, Sitangshu</creatorcontrib><creatorcontrib>Sinha, Uday K.</creatorcontrib><creatorcontrib>Biswal, Bishnu P.</creatorcontrib><creatorcontrib>Jaryal, Ajay</creatorcontrib><creatorcontrib>Jain, Pankaj K.</creatorcontrib><creatorcontrib>Patbhaje, Suraj</creatorcontrib><creatorcontrib>Dash, Ashutosh</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Science Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Aquatic geochemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chatterjee, Sitangshu</au><au>Sinha, Uday K.</au><au>Biswal, Bishnu P.</au><au>Jaryal, Ajay</au><au>Jain, Pankaj K.</au><au>Patbhaje, Suraj</au><au>Dash, Ashutosh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Integrated Isotope-Geochemical Approach to Characterize a Medium Enthalpy Geothermal System in India</atitle><jtitle>Aquatic geochemistry</jtitle><stitle>Aquat Geochem</stitle><date>2019-04-01</date><risdate>2019</risdate><volume>25</volume><issue>1-2</issue><spage>63</spage><epage>89</epage><pages>63-89</pages><issn>1380-6165</issn><eissn>1573-1421</eissn><abstract>The Manuguru geothermal area, situated in the Telangana state, is one of the least explored geothermal fields in India. In this study, the chemical characteristics of the groundwater (thermal and non-thermal waters) are investigated to elucidate the source of the solutes dissolved in the water and to determine the approximate residence time of the thermal waters. The major hydrogeochemical processes controlling the groundwater geochemistry have been deciphered using multivariate statistical analysis, conventional graphical plots and geochemical modelling (PHREEQC). Geochemically different groundwater clusters (bicarbonate type, bicarbonate–chloride type and chloride type) can clearly be identified from the chemometric analysis, i.e. PCA and HCA. Thermal waters are mostly Na–HCO
3
type having low EC and TDS compared to non-thermal groundwaters. Silicate weathering and ion exchange mainly contribute to the dissolved ion budget in the groundwater of the study area. The carbon isotopic composition of DIC (δ
13
C) points to silicate weathering with soil CO
2
coming from C
3
type of plants. Stable isotopes (δ
18
O, δ
2
H) data confirm the meteoric origin of the thermal waters with no oxygen-18 shift. The low tritium values of the thermal water samples reveal the long circulation time (> 50 years) of the recharging waters. Radiocarbon dating (
14
C) shows that the approximate residence time of the thermal waters ranges from 9952 to 18,663 year BP (before present).</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10498-019-09352-z</doi><tpages>27</tpages><orcidid>https://orcid.org/0000-0001-7289-2739</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1380-6165 |
ispartof | Aquatic geochemistry, 2019-04, Vol.25 (1-2), p.63-89 |
issn | 1380-6165 1573-1421 |
language | eng |
recordid | cdi_proquest_journals_2215418244 |
source | Springer Nature - Complete Springer Journals |
subjects | Bicarbonates Carbon 14 Carbon dioxide Chlorides Composition Earth and Environmental Science Earth Sciences Enthalpy Geochemistry Groundwater Hydrogeochemistry Hydrogeology Hydrology/Water Resources Hydrothermal fields Ion exchange Isotopes Modelling Multivariate statistical analysis Organic chemistry Original Article Radiocarbon dating Radiometric dating Residence time Residence time distribution Silicates Soil Solutes Stable isotopes Statistical analysis Statistical methods Thermal water Tritium Water analysis Water circulation Water Quality/Water Pollution Water sampling Weathering |
title | An Integrated Isotope-Geochemical Approach to Characterize a Medium Enthalpy Geothermal System in India |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T02%3A40%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Integrated%20Isotope-Geochemical%20Approach%20to%20Characterize%20a%20Medium%20Enthalpy%20Geothermal%20System%20in%20India&rft.jtitle=Aquatic%20geochemistry&rft.au=Chatterjee,%20Sitangshu&rft.date=2019-04-01&rft.volume=25&rft.issue=1-2&rft.spage=63&rft.epage=89&rft.pages=63-89&rft.issn=1380-6165&rft.eissn=1573-1421&rft_id=info:doi/10.1007/s10498-019-09352-z&rft_dat=%3Cproquest_cross%3E2215418244%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2215418244&rft_id=info:pmid/&rfr_iscdi=true |