Coagulation: its effect on organic matter

Removal of natural aquatic dissolved organic matter (DOM) by conventional coagulation using ferric chloride was investigated. Reverse osmosis was used to isolate DOM from the Suwannee River in southern Georgia and from Lake Allatoona in northwestern Georgia. The two most significant differences betw...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal - American Water Works Association 1996-04, Vol.88 (4), p.129-142
Hauptverfasser: Dennett, Keith E., Amirtharajah, A., Moran, Thomas F., Gould, Joseph P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 142
container_issue 4
container_start_page 129
container_title Journal - American Water Works Association
container_volume 88
creator Dennett, Keith E.
Amirtharajah, A.
Moran, Thomas F.
Gould, Joseph P.
description Removal of natural aquatic dissolved organic matter (DOM) by conventional coagulation using ferric chloride was investigated. Reverse osmosis was used to isolate DOM from the Suwannee River in southern Georgia and from Lake Allatoona in northwestern Georgia. The two most significant differences between the source waters are pH and organic carbon concentration. Extensive jar-testing identified regions of removal based on initial concentration of DOM, coagulant dosage,, and pH conditions. Fast atom bombardment mass spectrometry was used to characterize the molecular-weight distributions of DOM before and after coagulation. Trends in the shape of the mass spectra correlated well with data for DOM removal and suggested that the mechanism for DOM removal varies with the pH and coagulant dosage. At higher pH conditions and lower coagulant dosages, masses up to 1,000 daltons (D) were detected in the mass spectra after coagulation. At lower pH conditions and higher coagulant dosages, no masses above 750 D appeared in the mass spectra.
doi_str_mv 10.1002/j.1551-8833.1996.tb06539.x
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_221530908</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41295505</jstor_id><sourcerecordid>41295505</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4339-893c2c743ab1fc72b88500b461c1e404d2bf9cc0ebb4c6a0ee1c675876cdce053</originalsourceid><addsrcrecordid>eNqVkF9LwzAUxYMoOKcfQSjDFx9a722StvGtDP_BwBdlvoU0S0dL18ykw-3b29qxd59ywz33dziHkBlChADxQx0h5xhmGaURCpFEXQEJpyLan5HJaXVOJgBAQ-TwdUmuvK_7L3JkE3I_t2q9a1RX2fYxqDofmLI0ugtsG1i3Vm2lg43qOuOuyUWpGm9uju-UfD4_fcxfw8X7y9s8X4SaUSrCTFAd65RRVWCp07jIMg5QsAQ1GgZsFRel0BpMUTCdKDAGdZLyLE30ShvgdEpmI3fr7PfO-E7Wdufa3lLGMXIKArJe9DiKtLPeO1PKras2yh0kghyakbUc4sshvhyakcdm5L4_vjs6KK9VUzrV6sqfCBQYIhO9LB9lP1VjDv8wkPlymf_NPeN2ZNS-s-7EYBgLzvuwv3awgPM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>221530908</pqid></control><display><type>article</type><title>Coagulation: its effect on organic matter</title><source>Jstor Complete Legacy</source><creator>Dennett, Keith E. ; Amirtharajah, A. ; Moran, Thomas F. ; Gould, Joseph P.</creator><creatorcontrib>Dennett, Keith E. ; Amirtharajah, A. ; Moran, Thomas F. ; Gould, Joseph P.</creatorcontrib><description>Removal of natural aquatic dissolved organic matter (DOM) by conventional coagulation using ferric chloride was investigated. Reverse osmosis was used to isolate DOM from the Suwannee River in southern Georgia and from Lake Allatoona in northwestern Georgia. The two most significant differences between the source waters are pH and organic carbon concentration. Extensive jar-testing identified regions of removal based on initial concentration of DOM, coagulant dosage,, and pH conditions. Fast atom bombardment mass spectrometry was used to characterize the molecular-weight distributions of DOM before and after coagulation. Trends in the shape of the mass spectra correlated well with data for DOM removal and suggested that the mechanism for DOM removal varies with the pH and coagulant dosage. At higher pH conditions and lower coagulant dosages, masses up to 1,000 daltons (D) were detected in the mass spectra after coagulation. At lower pH conditions and higher coagulant dosages, no masses above 750 D appeared in the mass spectra.</description><identifier>ISSN: 0003-150X</identifier><identifier>EISSN: 1551-8833</identifier><identifier>DOI: 10.1002/j.1551-8833.1996.tb06539.x</identifier><identifier>CODEN: JAWWA5</identifier><language>eng</language><publisher>Denver, CO: American Water Works Association</publisher><subject>Acids ; Adsorption ; Alkalinity ; Applied sciences ; Atoms ; By products ; Carbon ; Chemical precipitation ; Chlorides ; Coagulants ; Coagulation ; Drinking water and swimming-pool water. Desalination ; Exact sciences and technology ; Ferric Chloride ; Mass spectra ; Mass spectroscopy ; Organic Carbon ; Organic matter ; Pollution ; Reverse Osmosis ; Surface water ; Turbidity ; Water treatment ; Water treatment and pollution</subject><ispartof>Journal - American Water Works Association, 1996-04, Vol.88 (4), p.129-142</ispartof><rights>Copyright© 1996 AWWA</rights><rights>1996 American Water Works Association</rights><rights>1996 INIST-CNRS</rights><rights>Copyright American Water Works Association Apr 1996</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4339-893c2c743ab1fc72b88500b461c1e404d2bf9cc0ebb4c6a0ee1c675876cdce053</citedby><cites>FETCH-LOGICAL-c4339-893c2c743ab1fc72b88500b461c1e404d2bf9cc0ebb4c6a0ee1c675876cdce053</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41295505$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41295505$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,778,782,801,27907,27908,58000,58233</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=3041149$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Dennett, Keith E.</creatorcontrib><creatorcontrib>Amirtharajah, A.</creatorcontrib><creatorcontrib>Moran, Thomas F.</creatorcontrib><creatorcontrib>Gould, Joseph P.</creatorcontrib><title>Coagulation: its effect on organic matter</title><title>Journal - American Water Works Association</title><description>Removal of natural aquatic dissolved organic matter (DOM) by conventional coagulation using ferric chloride was investigated. Reverse osmosis was used to isolate DOM from the Suwannee River in southern Georgia and from Lake Allatoona in northwestern Georgia. The two most significant differences between the source waters are pH and organic carbon concentration. Extensive jar-testing identified regions of removal based on initial concentration of DOM, coagulant dosage,, and pH conditions. Fast atom bombardment mass spectrometry was used to characterize the molecular-weight distributions of DOM before and after coagulation. Trends in the shape of the mass spectra correlated well with data for DOM removal and suggested that the mechanism for DOM removal varies with the pH and coagulant dosage. At higher pH conditions and lower coagulant dosages, masses up to 1,000 daltons (D) were detected in the mass spectra after coagulation. At lower pH conditions and higher coagulant dosages, no masses above 750 D appeared in the mass spectra.</description><subject>Acids</subject><subject>Adsorption</subject><subject>Alkalinity</subject><subject>Applied sciences</subject><subject>Atoms</subject><subject>By products</subject><subject>Carbon</subject><subject>Chemical precipitation</subject><subject>Chlorides</subject><subject>Coagulants</subject><subject>Coagulation</subject><subject>Drinking water and swimming-pool water. Desalination</subject><subject>Exact sciences and technology</subject><subject>Ferric Chloride</subject><subject>Mass spectra</subject><subject>Mass spectroscopy</subject><subject>Organic Carbon</subject><subject>Organic matter</subject><subject>Pollution</subject><subject>Reverse Osmosis</subject><subject>Surface water</subject><subject>Turbidity</subject><subject>Water treatment</subject><subject>Water treatment and pollution</subject><issn>0003-150X</issn><issn>1551-8833</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqVkF9LwzAUxYMoOKcfQSjDFx9a722StvGtDP_BwBdlvoU0S0dL18ykw-3b29qxd59ywz33dziHkBlChADxQx0h5xhmGaURCpFEXQEJpyLan5HJaXVOJgBAQ-TwdUmuvK_7L3JkE3I_t2q9a1RX2fYxqDofmLI0ugtsG1i3Vm2lg43qOuOuyUWpGm9uju-UfD4_fcxfw8X7y9s8X4SaUSrCTFAd65RRVWCp07jIMg5QsAQ1GgZsFRel0BpMUTCdKDAGdZLyLE30ShvgdEpmI3fr7PfO-E7Wdufa3lLGMXIKArJe9DiKtLPeO1PKras2yh0kghyakbUc4sshvhyakcdm5L4_vjs6KK9VUzrV6sqfCBQYIhO9LB9lP1VjDv8wkPlymf_NPeN2ZNS-s-7EYBgLzvuwv3awgPM</recordid><startdate>199604</startdate><enddate>199604</enddate><creator>Dennett, Keith E.</creator><creator>Amirtharajah, A.</creator><creator>Moran, Thomas F.</creator><creator>Gould, Joseph P.</creator><general>American Water Works Association</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7ST</scope><scope>7UA</scope><scope>7WY</scope><scope>7X7</scope><scope>7XB</scope><scope>883</scope><scope>88E</scope><scope>88I</scope><scope>8C1</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H97</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.G</scope><scope>L6V</scope><scope>LK8</scope><scope>M0F</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>M7S</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0X</scope><scope>SOI</scope></search><sort><creationdate>199604</creationdate><title>Coagulation: its effect on organic matter</title><author>Dennett, Keith E. ; Amirtharajah, A. ; Moran, Thomas F. ; Gould, Joseph P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4339-893c2c743ab1fc72b88500b461c1e404d2bf9cc0ebb4c6a0ee1c675876cdce053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Acids</topic><topic>Adsorption</topic><topic>Alkalinity</topic><topic>Applied sciences</topic><topic>Atoms</topic><topic>By products</topic><topic>Carbon</topic><topic>Chemical precipitation</topic><topic>Chlorides</topic><topic>Coagulants</topic><topic>Coagulation</topic><topic>Drinking water and swimming-pool water. Desalination</topic><topic>Exact sciences and technology</topic><topic>Ferric Chloride</topic><topic>Mass spectra</topic><topic>Mass spectroscopy</topic><topic>Organic Carbon</topic><topic>Organic matter</topic><topic>Pollution</topic><topic>Reverse Osmosis</topic><topic>Surface water</topic><topic>Turbidity</topic><topic>Water treatment</topic><topic>Water treatment and pollution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dennett, Keith E.</creatorcontrib><creatorcontrib>Amirtharajah, A.</creatorcontrib><creatorcontrib>Moran, Thomas F.</creatorcontrib><creatorcontrib>Gould, Joseph P.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Trade &amp; Industry (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Public Health Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Trade &amp; Industry</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><jtitle>Journal - American Water Works Association</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dennett, Keith E.</au><au>Amirtharajah, A.</au><au>Moran, Thomas F.</au><au>Gould, Joseph P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coagulation: its effect on organic matter</atitle><jtitle>Journal - American Water Works Association</jtitle><date>1996-04</date><risdate>1996</risdate><volume>88</volume><issue>4</issue><spage>129</spage><epage>142</epage><pages>129-142</pages><issn>0003-150X</issn><eissn>1551-8833</eissn><coden>JAWWA5</coden><abstract>Removal of natural aquatic dissolved organic matter (DOM) by conventional coagulation using ferric chloride was investigated. Reverse osmosis was used to isolate DOM from the Suwannee River in southern Georgia and from Lake Allatoona in northwestern Georgia. The two most significant differences between the source waters are pH and organic carbon concentration. Extensive jar-testing identified regions of removal based on initial concentration of DOM, coagulant dosage,, and pH conditions. Fast atom bombardment mass spectrometry was used to characterize the molecular-weight distributions of DOM before and after coagulation. Trends in the shape of the mass spectra correlated well with data for DOM removal and suggested that the mechanism for DOM removal varies with the pH and coagulant dosage. At higher pH conditions and lower coagulant dosages, masses up to 1,000 daltons (D) were detected in the mass spectra after coagulation. At lower pH conditions and higher coagulant dosages, no masses above 750 D appeared in the mass spectra.</abstract><cop>Denver, CO</cop><pub>American Water Works Association</pub><doi>10.1002/j.1551-8833.1996.tb06539.x</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0003-150X
ispartof Journal - American Water Works Association, 1996-04, Vol.88 (4), p.129-142
issn 0003-150X
1551-8833
language eng
recordid cdi_proquest_journals_221530908
source Jstor Complete Legacy
subjects Acids
Adsorption
Alkalinity
Applied sciences
Atoms
By products
Carbon
Chemical precipitation
Chlorides
Coagulants
Coagulation
Drinking water and swimming-pool water. Desalination
Exact sciences and technology
Ferric Chloride
Mass spectra
Mass spectroscopy
Organic Carbon
Organic matter
Pollution
Reverse Osmosis
Surface water
Turbidity
Water treatment
Water treatment and pollution
title Coagulation: its effect on organic matter
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T18%3A32%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coagulation:%20its%20effect%20on%20organic%20matter&rft.jtitle=Journal%20-%20American%20Water%20Works%20Association&rft.au=Dennett,%20Keith%20E.&rft.date=1996-04&rft.volume=88&rft.issue=4&rft.spage=129&rft.epage=142&rft.pages=129-142&rft.issn=0003-150X&rft.eissn=1551-8833&rft.coden=JAWWA5&rft_id=info:doi/10.1002/j.1551-8833.1996.tb06539.x&rft_dat=%3Cjstor_proqu%3E41295505%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=221530908&rft_id=info:pmid/&rft_jstor_id=41295505&rfr_iscdi=true