Automatic Passengers Counting In Public Rail Transport Using Wavelets

Previously, we introduced a passengers' counting algorithm in public rail transport. The main disadvantage of that algorithm is it lacks automatic event detection. In this article, we implement two automatic wavelet-based passengers counting algorithms. The new algorithms employ the spatial-dom...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Automatika 2012, Vol.53 (4), p.321-334
Hauptverfasser: De Potter, Pieterjan, Kypraios, Ioannis, Verstockt, Steven, Poppe, Chris, Van de Walle, Rik
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 334
container_issue 4
container_start_page 321
container_title Automatika
container_volume 53
creator De Potter, Pieterjan
Kypraios, Ioannis
Verstockt, Steven
Poppe, Chris
Van de Walle, Rik
description Previously, we introduced a passengers' counting algorithm in public rail transport. The main disadvantage of that algorithm is it lacks automatic event detection. In this article, we implement two automatic wavelet-based passengers counting algorithms. The new algorithms employ the spatial-domain Laplacian-of-Gaussian-based wavelet, and the frequency-domain applied Non-Linear Difference of Gaussians-based wavelet bandpass video scene filters to extract illumination invariant scene features and to combine them efficiently into the background reference frame. Manual segmentation of the scene into rectangles and tiles for detecting an object as seated is no longer needed as we now apply a boundary box tracker on the segmented moving objects' blobs. A scene map is combined with the wavelet-based methods and the boundary box for multi-camera object registration. We have developed a novel holistic geometrical approach for exploiting the scene map and the recorded video sequences from both cameras installed in each train coach to separate the detected objects and locate their positions on the scene map. We test all the algorithms with several video sequences recorded from the both cameras installed in each train coach. We compare the previously developed non-automatic passengers' counting algorithm with the two new automatic wavelet-based passengers' counting algorithms, and an additional spatial-domain automatic non-wavelet based Simple Mixture of Gaussian Models algorithm.
doi_str_mv 10.7305/automatika.53-4.227
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2215249070</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2215249070</sourcerecordid><originalsourceid>FETCH-LOGICAL-c377t-e890bfeb027dcbb6546c38ab0bea56e8e09324546045ecd94f752ade90626b53</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKu_wMuC562z-dy9CKX4UShYpOIxJNls2brd1CSr9N-b0oI3T8PM-z7vMIPQbQETQYDdqyG6rYrtp5owktMJxuIMjYqSljkhJZyjEQCwvCgovURXIWxSxwmHEXqcnlCTLVUItl9bH7KZG_rY9uts3mfLQXdJfVNtl6286sPO-Zi9h4P8ob5tZ2O4RheN6oK9OdUxWj09rmYv-eL1eT6bLnJDhIi5LSvQjdWARW205oxyQ0qlQVvFuC0tVATTNAXKrKkr2giGVW0r4JhrRsbo7hi78-5rsCHKjRt8nzZKjAuGaQUCkoscXca7ELxt5M63W-X3sgB5eJf8e5dkRNIEi0Q9HKm2b5zfqh_nu1pGte-cb9LZpg2S_BfwC1BQdx0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2215249070</pqid></control><display><type>article</type><title>Automatic Passengers Counting In Public Rail Transport Using Wavelets</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>De Potter, Pieterjan ; Kypraios, Ioannis ; Verstockt, Steven ; Poppe, Chris ; Van de Walle, Rik</creator><creatorcontrib>De Potter, Pieterjan ; Kypraios, Ioannis ; Verstockt, Steven ; Poppe, Chris ; Van de Walle, Rik</creatorcontrib><description>Previously, we introduced a passengers' counting algorithm in public rail transport. The main disadvantage of that algorithm is it lacks automatic event detection. In this article, we implement two automatic wavelet-based passengers counting algorithms. The new algorithms employ the spatial-domain Laplacian-of-Gaussian-based wavelet, and the frequency-domain applied Non-Linear Difference of Gaussians-based wavelet bandpass video scene filters to extract illumination invariant scene features and to combine them efficiently into the background reference frame. Manual segmentation of the scene into rectangles and tiles for detecting an object as seated is no longer needed as we now apply a boundary box tracker on the segmented moving objects' blobs. A scene map is combined with the wavelet-based methods and the boundary box for multi-camera object registration. We have developed a novel holistic geometrical approach for exploiting the scene map and the recorded video sequences from both cameras installed in each train coach to separate the detected objects and locate their positions on the scene map. We test all the algorithms with several video sequences recorded from the both cameras installed in each train coach. We compare the previously developed non-automatic passengers' counting algorithm with the two new automatic wavelet-based passengers' counting algorithms, and an additional spatial-domain automatic non-wavelet based Simple Mixture of Gaussian Models algorithm.</description><identifier>ISSN: 0005-1144</identifier><identifier>EISSN: 1848-3380</identifier><identifier>DOI: 10.7305/automatika.53-4.227</identifier><language>eng</language><publisher>Ljubljana: Taylor &amp; Francis</publisher><subject>Algorithms ; analiza videozapisa ; Automatic passengers' seats counting ; automatsko brojanje sjedalica ; Bandpass filters ; Cameras ; Electromagnetic wave filters ; Event detection ; Feature extraction ; frekvencijska i prostorna domena ; Frequency and spatial domain ; Illumination invariant ; jednostavna MoG ; Laplacian-of-Gaussian ; LoG ; Moving object recognition ; nelinearna razlika Gaussovih funkcija ; neosjetljivost na promjene u rasvjeti ; Non-Linear Difference of Gaussians ; otkrivanje događaja ; Passengers ; Rail transportation ; Rectangles ; Segmentation ; Simple Mixture of Gaussians ; Video analytics ; Wavelet analysis ; waveleti ; Wavelets</subject><ispartof>Automatika, 2012, Vol.53 (4), p.321-334</ispartof><rights>2012 Taylor and Francis Group, LLC 2012</rights><rights>2012 Taylor and Francis Group, LLC</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c377t-e890bfeb027dcbb6546c38ab0bea56e8e09324546045ecd94f752ade90626b53</citedby><cites>FETCH-LOGICAL-c377t-e890bfeb027dcbb6546c38ab0bea56e8e09324546045ecd94f752ade90626b53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4009,27902,27903,27904</link.rule.ids></links><search><creatorcontrib>De Potter, Pieterjan</creatorcontrib><creatorcontrib>Kypraios, Ioannis</creatorcontrib><creatorcontrib>Verstockt, Steven</creatorcontrib><creatorcontrib>Poppe, Chris</creatorcontrib><creatorcontrib>Van de Walle, Rik</creatorcontrib><title>Automatic Passengers Counting In Public Rail Transport Using Wavelets</title><title>Automatika</title><description>Previously, we introduced a passengers' counting algorithm in public rail transport. The main disadvantage of that algorithm is it lacks automatic event detection. In this article, we implement two automatic wavelet-based passengers counting algorithms. The new algorithms employ the spatial-domain Laplacian-of-Gaussian-based wavelet, and the frequency-domain applied Non-Linear Difference of Gaussians-based wavelet bandpass video scene filters to extract illumination invariant scene features and to combine them efficiently into the background reference frame. Manual segmentation of the scene into rectangles and tiles for detecting an object as seated is no longer needed as we now apply a boundary box tracker on the segmented moving objects' blobs. A scene map is combined with the wavelet-based methods and the boundary box for multi-camera object registration. We have developed a novel holistic geometrical approach for exploiting the scene map and the recorded video sequences from both cameras installed in each train coach to separate the detected objects and locate their positions on the scene map. We test all the algorithms with several video sequences recorded from the both cameras installed in each train coach. We compare the previously developed non-automatic passengers' counting algorithm with the two new automatic wavelet-based passengers' counting algorithms, and an additional spatial-domain automatic non-wavelet based Simple Mixture of Gaussian Models algorithm.</description><subject>Algorithms</subject><subject>analiza videozapisa</subject><subject>Automatic passengers' seats counting</subject><subject>automatsko brojanje sjedalica</subject><subject>Bandpass filters</subject><subject>Cameras</subject><subject>Electromagnetic wave filters</subject><subject>Event detection</subject><subject>Feature extraction</subject><subject>frekvencijska i prostorna domena</subject><subject>Frequency and spatial domain</subject><subject>Illumination invariant</subject><subject>jednostavna MoG</subject><subject>Laplacian-of-Gaussian</subject><subject>LoG</subject><subject>Moving object recognition</subject><subject>nelinearna razlika Gaussovih funkcija</subject><subject>neosjetljivost na promjene u rasvjeti</subject><subject>Non-Linear Difference of Gaussians</subject><subject>otkrivanje događaja</subject><subject>Passengers</subject><subject>Rail transportation</subject><subject>Rectangles</subject><subject>Segmentation</subject><subject>Simple Mixture of Gaussians</subject><subject>Video analytics</subject><subject>Wavelet analysis</subject><subject>waveleti</subject><subject>Wavelets</subject><issn>0005-1144</issn><issn>1848-3380</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kE1LAzEQhoMoWKu_wMuC562z-dy9CKX4UShYpOIxJNls2brd1CSr9N-b0oI3T8PM-z7vMIPQbQETQYDdqyG6rYrtp5owktMJxuIMjYqSljkhJZyjEQCwvCgovURXIWxSxwmHEXqcnlCTLVUItl9bH7KZG_rY9uts3mfLQXdJfVNtl6286sPO-Zi9h4P8ob5tZ2O4RheN6oK9OdUxWj09rmYv-eL1eT6bLnJDhIi5LSvQjdWARW205oxyQ0qlQVvFuC0tVATTNAXKrKkr2giGVW0r4JhrRsbo7hi78-5rsCHKjRt8nzZKjAuGaQUCkoscXca7ELxt5M63W-X3sgB5eJf8e5dkRNIEi0Q9HKm2b5zfqh_nu1pGte-cb9LZpg2S_BfwC1BQdx0</recordid><startdate>2012</startdate><enddate>2012</enddate><creator>De Potter, Pieterjan</creator><creator>Kypraios, Ioannis</creator><creator>Verstockt, Steven</creator><creator>Poppe, Chris</creator><creator>Van de Walle, Rik</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>8FD</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>2012</creationdate><title>Automatic Passengers Counting In Public Rail Transport Using Wavelets</title><author>De Potter, Pieterjan ; Kypraios, Ioannis ; Verstockt, Steven ; Poppe, Chris ; Van de Walle, Rik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c377t-e890bfeb027dcbb6546c38ab0bea56e8e09324546045ecd94f752ade90626b53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algorithms</topic><topic>analiza videozapisa</topic><topic>Automatic passengers' seats counting</topic><topic>automatsko brojanje sjedalica</topic><topic>Bandpass filters</topic><topic>Cameras</topic><topic>Electromagnetic wave filters</topic><topic>Event detection</topic><topic>Feature extraction</topic><topic>frekvencijska i prostorna domena</topic><topic>Frequency and spatial domain</topic><topic>Illumination invariant</topic><topic>jednostavna MoG</topic><topic>Laplacian-of-Gaussian</topic><topic>LoG</topic><topic>Moving object recognition</topic><topic>nelinearna razlika Gaussovih funkcija</topic><topic>neosjetljivost na promjene u rasvjeti</topic><topic>Non-Linear Difference of Gaussians</topic><topic>otkrivanje događaja</topic><topic>Passengers</topic><topic>Rail transportation</topic><topic>Rectangles</topic><topic>Segmentation</topic><topic>Simple Mixture of Gaussians</topic><topic>Video analytics</topic><topic>Wavelet analysis</topic><topic>waveleti</topic><topic>Wavelets</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>De Potter, Pieterjan</creatorcontrib><creatorcontrib>Kypraios, Ioannis</creatorcontrib><creatorcontrib>Verstockt, Steven</creatorcontrib><creatorcontrib>Poppe, Chris</creatorcontrib><creatorcontrib>Van de Walle, Rik</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Automatika</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>De Potter, Pieterjan</au><au>Kypraios, Ioannis</au><au>Verstockt, Steven</au><au>Poppe, Chris</au><au>Van de Walle, Rik</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automatic Passengers Counting In Public Rail Transport Using Wavelets</atitle><jtitle>Automatika</jtitle><date>2012</date><risdate>2012</risdate><volume>53</volume><issue>4</issue><spage>321</spage><epage>334</epage><pages>321-334</pages><issn>0005-1144</issn><eissn>1848-3380</eissn><abstract>Previously, we introduced a passengers' counting algorithm in public rail transport. The main disadvantage of that algorithm is it lacks automatic event detection. In this article, we implement two automatic wavelet-based passengers counting algorithms. The new algorithms employ the spatial-domain Laplacian-of-Gaussian-based wavelet, and the frequency-domain applied Non-Linear Difference of Gaussians-based wavelet bandpass video scene filters to extract illumination invariant scene features and to combine them efficiently into the background reference frame. Manual segmentation of the scene into rectangles and tiles for detecting an object as seated is no longer needed as we now apply a boundary box tracker on the segmented moving objects' blobs. A scene map is combined with the wavelet-based methods and the boundary box for multi-camera object registration. We have developed a novel holistic geometrical approach for exploiting the scene map and the recorded video sequences from both cameras installed in each train coach to separate the detected objects and locate their positions on the scene map. We test all the algorithms with several video sequences recorded from the both cameras installed in each train coach. We compare the previously developed non-automatic passengers' counting algorithm with the two new automatic wavelet-based passengers' counting algorithms, and an additional spatial-domain automatic non-wavelet based Simple Mixture of Gaussian Models algorithm.</abstract><cop>Ljubljana</cop><pub>Taylor &amp; Francis</pub><doi>10.7305/automatika.53-4.227</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0005-1144
ispartof Automatika, 2012, Vol.53 (4), p.321-334
issn 0005-1144
1848-3380
language eng
recordid cdi_proquest_journals_2215249070
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Algorithms
analiza videozapisa
Automatic passengers' seats counting
automatsko brojanje sjedalica
Bandpass filters
Cameras
Electromagnetic wave filters
Event detection
Feature extraction
frekvencijska i prostorna domena
Frequency and spatial domain
Illumination invariant
jednostavna MoG
Laplacian-of-Gaussian
LoG
Moving object recognition
nelinearna razlika Gaussovih funkcija
neosjetljivost na promjene u rasvjeti
Non-Linear Difference of Gaussians
otkrivanje događaja
Passengers
Rail transportation
Rectangles
Segmentation
Simple Mixture of Gaussians
Video analytics
Wavelet analysis
waveleti
Wavelets
title Automatic Passengers Counting In Public Rail Transport Using Wavelets
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T19%3A24%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automatic%20Passengers%20Counting%20In%20Public%20Rail%20Transport%20Using%20Wavelets&rft.jtitle=Automatika&rft.au=De%20Potter,%20Pieterjan&rft.date=2012&rft.volume=53&rft.issue=4&rft.spage=321&rft.epage=334&rft.pages=321-334&rft.issn=0005-1144&rft.eissn=1848-3380&rft_id=info:doi/10.7305/automatika.53-4.227&rft_dat=%3Cproquest_cross%3E2215249070%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2215249070&rft_id=info:pmid/&rfr_iscdi=true