Hessian-Regularized Multitask Dictionary Learning for Remote Sensing Image Recognition
Learning effective image representations is a vital issue for remote sensing (RS) image recognition tasks. Although numerous algorithms have been proposed, it is still challenging due to the limited labeled data. One representative work is the Laplacian-regularized multitask dictionary learning (LR-...
Gespeichert in:
Veröffentlicht in: | IEEE geoscience and remote sensing letters 2019-05, Vol.16 (5), p.821-825 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 825 |
---|---|
container_issue | 5 |
container_start_page | 821 |
container_title | IEEE geoscience and remote sensing letters |
container_volume | 16 |
creator | Feng, Guanhua Liu, Weifeng Li, Shuying Tao, Dapeng Zhou, Yicong |
description | Learning effective image representations is a vital issue for remote sensing (RS) image recognition tasks. Although numerous algorithms have been proposed, it is still challenging due to the limited labeled data. One representative work is the Laplacian-regularized multitask dictionary learning (LR-MTDL) that employs graph Laplacian regularization terms to fully utilize both the labeled and unlabeled information. However, it probably conduces to poor extrapolating power because Laplacian regularization biases the solution toward a constant function. In this letter, we propose a Hessian-regularized multitask dictionary learning to learn a source-data set-shared but target-data set-biased representation for RS image recognition. Particularly, Hessian can properly exploit the intrinsic local geometry of the data manifold and finally leverage the performance. Extensive experiments on four RS image data sets validate the effectiveness of the proposed method by comparing with baseline algorithms including single-task dictionary learning and LR-MTDL. |
doi_str_mv | 10.1109/LGRS.2018.2881834 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2215165203</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8565932</ieee_id><sourcerecordid>2215165203</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-5c1ab7b26602d4f2442d0ce54b607ff8c99f4554a985461eb0bb0d1f55988d4d3</originalsourceid><addsrcrecordid>eNo9kFFLwzAUhYMoOKc_QHwp-NyZpLlt-ihTt0FF2FR8C2l7UzK3VJP2QX-9LRs-3cvhnHs5HyHXjM4Yo_ldsVhvZpwyOeNSMpmIEzJhADKmkLHTcRcQQy4_zslFCFtKuZAym5D3JYZgtYvX2PQ77e0v1tFzv-tsp8Nn9GCrzrZO-5-oQO2ddU1kWh-tcd92GG3QhVFa7XWDg1i1jbNj4JKcGb0LeHWcU_L29Pg6X8bFy2I1vy_iKoG8i6FiusxKnqaU18JwIXhNKwRRpjQzRlZ5bgSA0LkEkTIsaVnSmhkYmsha1MmU3B7ufvn2u8fQqW3beze8VJwzYClwmgwudnBVvg3Bo1Ff3u6HUopRNeJTIz414lNHfEPm5pCxiPjvl5BCnvDkD7xBbCI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2215165203</pqid></control><display><type>article</type><title>Hessian-Regularized Multitask Dictionary Learning for Remote Sensing Image Recognition</title><source>IEEE Electronic Library (IEL)</source><creator>Feng, Guanhua ; Liu, Weifeng ; Li, Shuying ; Tao, Dapeng ; Zhou, Yicong</creator><creatorcontrib>Feng, Guanhua ; Liu, Weifeng ; Li, Shuying ; Tao, Dapeng ; Zhou, Yicong</creatorcontrib><description>Learning effective image representations is a vital issue for remote sensing (RS) image recognition tasks. Although numerous algorithms have been proposed, it is still challenging due to the limited labeled data. One representative work is the Laplacian-regularized multitask dictionary learning (LR-MTDL) that employs graph Laplacian regularization terms to fully utilize both the labeled and unlabeled information. However, it probably conduces to poor extrapolating power because Laplacian regularization biases the solution toward a constant function. In this letter, we propose a Hessian-regularized multitask dictionary learning to learn a source-data set-shared but target-data set-biased representation for RS image recognition. Particularly, Hessian can properly exploit the intrinsic local geometry of the data manifold and finally leverage the performance. Extensive experiments on four RS image data sets validate the effectiveness of the proposed method by comparing with baseline algorithms including single-task dictionary learning and LR-MTDL.</description><identifier>ISSN: 1545-598X</identifier><identifier>EISSN: 1558-0571</identifier><identifier>DOI: 10.1109/LGRS.2018.2881834</identifier><identifier>CODEN: IGRSBY</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Cameras ; Data ; Dictionaries ; Feature extraction ; Hessian regularization ; Image recognition ; Laplace equations ; Learning ; Machine learning ; Manifolds ; multitask dictionary learning ; Object recognition ; Regularization ; Remote sensing ; remote sensing (RS) image recognition ; Representations ; Task analysis</subject><ispartof>IEEE geoscience and remote sensing letters, 2019-05, Vol.16 (5), p.821-825</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-5c1ab7b26602d4f2442d0ce54b607ff8c99f4554a985461eb0bb0d1f55988d4d3</citedby><cites>FETCH-LOGICAL-c359t-5c1ab7b26602d4f2442d0ce54b607ff8c99f4554a985461eb0bb0d1f55988d4d3</cites><orcidid>0000-0002-5388-9080 ; 0000-0003-0783-5273 ; 0000-0003-3994-2874 ; 0000-0002-4487-6384</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8565932$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8565932$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Feng, Guanhua</creatorcontrib><creatorcontrib>Liu, Weifeng</creatorcontrib><creatorcontrib>Li, Shuying</creatorcontrib><creatorcontrib>Tao, Dapeng</creatorcontrib><creatorcontrib>Zhou, Yicong</creatorcontrib><title>Hessian-Regularized Multitask Dictionary Learning for Remote Sensing Image Recognition</title><title>IEEE geoscience and remote sensing letters</title><addtitle>LGRS</addtitle><description>Learning effective image representations is a vital issue for remote sensing (RS) image recognition tasks. Although numerous algorithms have been proposed, it is still challenging due to the limited labeled data. One representative work is the Laplacian-regularized multitask dictionary learning (LR-MTDL) that employs graph Laplacian regularization terms to fully utilize both the labeled and unlabeled information. However, it probably conduces to poor extrapolating power because Laplacian regularization biases the solution toward a constant function. In this letter, we propose a Hessian-regularized multitask dictionary learning to learn a source-data set-shared but target-data set-biased representation for RS image recognition. Particularly, Hessian can properly exploit the intrinsic local geometry of the data manifold and finally leverage the performance. Extensive experiments on four RS image data sets validate the effectiveness of the proposed method by comparing with baseline algorithms including single-task dictionary learning and LR-MTDL.</description><subject>Algorithms</subject><subject>Cameras</subject><subject>Data</subject><subject>Dictionaries</subject><subject>Feature extraction</subject><subject>Hessian regularization</subject><subject>Image recognition</subject><subject>Laplace equations</subject><subject>Learning</subject><subject>Machine learning</subject><subject>Manifolds</subject><subject>multitask dictionary learning</subject><subject>Object recognition</subject><subject>Regularization</subject><subject>Remote sensing</subject><subject>remote sensing (RS) image recognition</subject><subject>Representations</subject><subject>Task analysis</subject><issn>1545-598X</issn><issn>1558-0571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kFFLwzAUhYMoOKc_QHwp-NyZpLlt-ihTt0FF2FR8C2l7UzK3VJP2QX-9LRs-3cvhnHs5HyHXjM4Yo_ldsVhvZpwyOeNSMpmIEzJhADKmkLHTcRcQQy4_zslFCFtKuZAym5D3JYZgtYvX2PQ77e0v1tFzv-tsp8Nn9GCrzrZO-5-oQO2ddU1kWh-tcd92GG3QhVFa7XWDg1i1jbNj4JKcGb0LeHWcU_L29Pg6X8bFy2I1vy_iKoG8i6FiusxKnqaU18JwIXhNKwRRpjQzRlZ5bgSA0LkEkTIsaVnSmhkYmsha1MmU3B7ufvn2u8fQqW3beze8VJwzYClwmgwudnBVvg3Bo1Ff3u6HUopRNeJTIz414lNHfEPm5pCxiPjvl5BCnvDkD7xBbCI</recordid><startdate>20190501</startdate><enddate>20190501</enddate><creator>Feng, Guanhua</creator><creator>Liu, Weifeng</creator><creator>Li, Shuying</creator><creator>Tao, Dapeng</creator><creator>Zhou, Yicong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>JQ2</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-5388-9080</orcidid><orcidid>https://orcid.org/0000-0003-0783-5273</orcidid><orcidid>https://orcid.org/0000-0003-3994-2874</orcidid><orcidid>https://orcid.org/0000-0002-4487-6384</orcidid></search><sort><creationdate>20190501</creationdate><title>Hessian-Regularized Multitask Dictionary Learning for Remote Sensing Image Recognition</title><author>Feng, Guanhua ; Liu, Weifeng ; Li, Shuying ; Tao, Dapeng ; Zhou, Yicong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-5c1ab7b26602d4f2442d0ce54b607ff8c99f4554a985461eb0bb0d1f55988d4d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Cameras</topic><topic>Data</topic><topic>Dictionaries</topic><topic>Feature extraction</topic><topic>Hessian regularization</topic><topic>Image recognition</topic><topic>Laplace equations</topic><topic>Learning</topic><topic>Machine learning</topic><topic>Manifolds</topic><topic>multitask dictionary learning</topic><topic>Object recognition</topic><topic>Regularization</topic><topic>Remote sensing</topic><topic>remote sensing (RS) image recognition</topic><topic>Representations</topic><topic>Task analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Feng, Guanhua</creatorcontrib><creatorcontrib>Liu, Weifeng</creatorcontrib><creatorcontrib>Li, Shuying</creatorcontrib><creatorcontrib>Tao, Dapeng</creatorcontrib><creatorcontrib>Zhou, Yicong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE geoscience and remote sensing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Feng, Guanhua</au><au>Liu, Weifeng</au><au>Li, Shuying</au><au>Tao, Dapeng</au><au>Zhou, Yicong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hessian-Regularized Multitask Dictionary Learning for Remote Sensing Image Recognition</atitle><jtitle>IEEE geoscience and remote sensing letters</jtitle><stitle>LGRS</stitle><date>2019-05-01</date><risdate>2019</risdate><volume>16</volume><issue>5</issue><spage>821</spage><epage>825</epage><pages>821-825</pages><issn>1545-598X</issn><eissn>1558-0571</eissn><coden>IGRSBY</coden><abstract>Learning effective image representations is a vital issue for remote sensing (RS) image recognition tasks. Although numerous algorithms have been proposed, it is still challenging due to the limited labeled data. One representative work is the Laplacian-regularized multitask dictionary learning (LR-MTDL) that employs graph Laplacian regularization terms to fully utilize both the labeled and unlabeled information. However, it probably conduces to poor extrapolating power because Laplacian regularization biases the solution toward a constant function. In this letter, we propose a Hessian-regularized multitask dictionary learning to learn a source-data set-shared but target-data set-biased representation for RS image recognition. Particularly, Hessian can properly exploit the intrinsic local geometry of the data manifold and finally leverage the performance. Extensive experiments on four RS image data sets validate the effectiveness of the proposed method by comparing with baseline algorithms including single-task dictionary learning and LR-MTDL.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LGRS.2018.2881834</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-5388-9080</orcidid><orcidid>https://orcid.org/0000-0003-0783-5273</orcidid><orcidid>https://orcid.org/0000-0003-3994-2874</orcidid><orcidid>https://orcid.org/0000-0002-4487-6384</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1545-598X |
ispartof | IEEE geoscience and remote sensing letters, 2019-05, Vol.16 (5), p.821-825 |
issn | 1545-598X 1558-0571 |
language | eng |
recordid | cdi_proquest_journals_2215165203 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Cameras Data Dictionaries Feature extraction Hessian regularization Image recognition Laplace equations Learning Machine learning Manifolds multitask dictionary learning Object recognition Regularization Remote sensing remote sensing (RS) image recognition Representations Task analysis |
title | Hessian-Regularized Multitask Dictionary Learning for Remote Sensing Image Recognition |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T11%3A42%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hessian-Regularized%20Multitask%20Dictionary%20Learning%20for%20Remote%20Sensing%20Image%20Recognition&rft.jtitle=IEEE%20geoscience%20and%20remote%20sensing%20letters&rft.au=Feng,%20Guanhua&rft.date=2019-05-01&rft.volume=16&rft.issue=5&rft.spage=821&rft.epage=825&rft.pages=821-825&rft.issn=1545-598X&rft.eissn=1558-0571&rft.coden=IGRSBY&rft_id=info:doi/10.1109/LGRS.2018.2881834&rft_dat=%3Cproquest_RIE%3E2215165203%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2215165203&rft_id=info:pmid/&rft_ieee_id=8565932&rfr_iscdi=true |