Hessian-Regularized Multitask Dictionary Learning for Remote Sensing Image Recognition

Learning effective image representations is a vital issue for remote sensing (RS) image recognition tasks. Although numerous algorithms have been proposed, it is still challenging due to the limited labeled data. One representative work is the Laplacian-regularized multitask dictionary learning (LR-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE geoscience and remote sensing letters 2019-05, Vol.16 (5), p.821-825
Hauptverfasser: Feng, Guanhua, Liu, Weifeng, Li, Shuying, Tao, Dapeng, Zhou, Yicong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 825
container_issue 5
container_start_page 821
container_title IEEE geoscience and remote sensing letters
container_volume 16
creator Feng, Guanhua
Liu, Weifeng
Li, Shuying
Tao, Dapeng
Zhou, Yicong
description Learning effective image representations is a vital issue for remote sensing (RS) image recognition tasks. Although numerous algorithms have been proposed, it is still challenging due to the limited labeled data. One representative work is the Laplacian-regularized multitask dictionary learning (LR-MTDL) that employs graph Laplacian regularization terms to fully utilize both the labeled and unlabeled information. However, it probably conduces to poor extrapolating power because Laplacian regularization biases the solution toward a constant function. In this letter, we propose a Hessian-regularized multitask dictionary learning to learn a source-data set-shared but target-data set-biased representation for RS image recognition. Particularly, Hessian can properly exploit the intrinsic local geometry of the data manifold and finally leverage the performance. Extensive experiments on four RS image data sets validate the effectiveness of the proposed method by comparing with baseline algorithms including single-task dictionary learning and LR-MTDL.
doi_str_mv 10.1109/LGRS.2018.2881834
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2215165203</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8565932</ieee_id><sourcerecordid>2215165203</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-5c1ab7b26602d4f2442d0ce54b607ff8c99f4554a985461eb0bb0d1f55988d4d3</originalsourceid><addsrcrecordid>eNo9kFFLwzAUhYMoOKc_QHwp-NyZpLlt-ihTt0FF2FR8C2l7UzK3VJP2QX-9LRs-3cvhnHs5HyHXjM4Yo_ldsVhvZpwyOeNSMpmIEzJhADKmkLHTcRcQQy4_zslFCFtKuZAym5D3JYZgtYvX2PQ77e0v1tFzv-tsp8Nn9GCrzrZO-5-oQO2ddU1kWh-tcd92GG3QhVFa7XWDg1i1jbNj4JKcGb0LeHWcU_L29Pg6X8bFy2I1vy_iKoG8i6FiusxKnqaU18JwIXhNKwRRpjQzRlZ5bgSA0LkEkTIsaVnSmhkYmsha1MmU3B7ufvn2u8fQqW3beze8VJwzYClwmgwudnBVvg3Bo1Ff3u6HUopRNeJTIz414lNHfEPm5pCxiPjvl5BCnvDkD7xBbCI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2215165203</pqid></control><display><type>article</type><title>Hessian-Regularized Multitask Dictionary Learning for Remote Sensing Image Recognition</title><source>IEEE Electronic Library (IEL)</source><creator>Feng, Guanhua ; Liu, Weifeng ; Li, Shuying ; Tao, Dapeng ; Zhou, Yicong</creator><creatorcontrib>Feng, Guanhua ; Liu, Weifeng ; Li, Shuying ; Tao, Dapeng ; Zhou, Yicong</creatorcontrib><description>Learning effective image representations is a vital issue for remote sensing (RS) image recognition tasks. Although numerous algorithms have been proposed, it is still challenging due to the limited labeled data. One representative work is the Laplacian-regularized multitask dictionary learning (LR-MTDL) that employs graph Laplacian regularization terms to fully utilize both the labeled and unlabeled information. However, it probably conduces to poor extrapolating power because Laplacian regularization biases the solution toward a constant function. In this letter, we propose a Hessian-regularized multitask dictionary learning to learn a source-data set-shared but target-data set-biased representation for RS image recognition. Particularly, Hessian can properly exploit the intrinsic local geometry of the data manifold and finally leverage the performance. Extensive experiments on four RS image data sets validate the effectiveness of the proposed method by comparing with baseline algorithms including single-task dictionary learning and LR-MTDL.</description><identifier>ISSN: 1545-598X</identifier><identifier>EISSN: 1558-0571</identifier><identifier>DOI: 10.1109/LGRS.2018.2881834</identifier><identifier>CODEN: IGRSBY</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Cameras ; Data ; Dictionaries ; Feature extraction ; Hessian regularization ; Image recognition ; Laplace equations ; Learning ; Machine learning ; Manifolds ; multitask dictionary learning ; Object recognition ; Regularization ; Remote sensing ; remote sensing (RS) image recognition ; Representations ; Task analysis</subject><ispartof>IEEE geoscience and remote sensing letters, 2019-05, Vol.16 (5), p.821-825</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-5c1ab7b26602d4f2442d0ce54b607ff8c99f4554a985461eb0bb0d1f55988d4d3</citedby><cites>FETCH-LOGICAL-c359t-5c1ab7b26602d4f2442d0ce54b607ff8c99f4554a985461eb0bb0d1f55988d4d3</cites><orcidid>0000-0002-5388-9080 ; 0000-0003-0783-5273 ; 0000-0003-3994-2874 ; 0000-0002-4487-6384</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8565932$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8565932$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Feng, Guanhua</creatorcontrib><creatorcontrib>Liu, Weifeng</creatorcontrib><creatorcontrib>Li, Shuying</creatorcontrib><creatorcontrib>Tao, Dapeng</creatorcontrib><creatorcontrib>Zhou, Yicong</creatorcontrib><title>Hessian-Regularized Multitask Dictionary Learning for Remote Sensing Image Recognition</title><title>IEEE geoscience and remote sensing letters</title><addtitle>LGRS</addtitle><description>Learning effective image representations is a vital issue for remote sensing (RS) image recognition tasks. Although numerous algorithms have been proposed, it is still challenging due to the limited labeled data. One representative work is the Laplacian-regularized multitask dictionary learning (LR-MTDL) that employs graph Laplacian regularization terms to fully utilize both the labeled and unlabeled information. However, it probably conduces to poor extrapolating power because Laplacian regularization biases the solution toward a constant function. In this letter, we propose a Hessian-regularized multitask dictionary learning to learn a source-data set-shared but target-data set-biased representation for RS image recognition. Particularly, Hessian can properly exploit the intrinsic local geometry of the data manifold and finally leverage the performance. Extensive experiments on four RS image data sets validate the effectiveness of the proposed method by comparing with baseline algorithms including single-task dictionary learning and LR-MTDL.</description><subject>Algorithms</subject><subject>Cameras</subject><subject>Data</subject><subject>Dictionaries</subject><subject>Feature extraction</subject><subject>Hessian regularization</subject><subject>Image recognition</subject><subject>Laplace equations</subject><subject>Learning</subject><subject>Machine learning</subject><subject>Manifolds</subject><subject>multitask dictionary learning</subject><subject>Object recognition</subject><subject>Regularization</subject><subject>Remote sensing</subject><subject>remote sensing (RS) image recognition</subject><subject>Representations</subject><subject>Task analysis</subject><issn>1545-598X</issn><issn>1558-0571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kFFLwzAUhYMoOKc_QHwp-NyZpLlt-ihTt0FF2FR8C2l7UzK3VJP2QX-9LRs-3cvhnHs5HyHXjM4Yo_ldsVhvZpwyOeNSMpmIEzJhADKmkLHTcRcQQy4_zslFCFtKuZAym5D3JYZgtYvX2PQ77e0v1tFzv-tsp8Nn9GCrzrZO-5-oQO2ddU1kWh-tcd92GG3QhVFa7XWDg1i1jbNj4JKcGb0LeHWcU_L29Pg6X8bFy2I1vy_iKoG8i6FiusxKnqaU18JwIXhNKwRRpjQzRlZ5bgSA0LkEkTIsaVnSmhkYmsha1MmU3B7ufvn2u8fQqW3beze8VJwzYClwmgwudnBVvg3Bo1Ff3u6HUopRNeJTIz414lNHfEPm5pCxiPjvl5BCnvDkD7xBbCI</recordid><startdate>20190501</startdate><enddate>20190501</enddate><creator>Feng, Guanhua</creator><creator>Liu, Weifeng</creator><creator>Li, Shuying</creator><creator>Tao, Dapeng</creator><creator>Zhou, Yicong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>JQ2</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-5388-9080</orcidid><orcidid>https://orcid.org/0000-0003-0783-5273</orcidid><orcidid>https://orcid.org/0000-0003-3994-2874</orcidid><orcidid>https://orcid.org/0000-0002-4487-6384</orcidid></search><sort><creationdate>20190501</creationdate><title>Hessian-Regularized Multitask Dictionary Learning for Remote Sensing Image Recognition</title><author>Feng, Guanhua ; Liu, Weifeng ; Li, Shuying ; Tao, Dapeng ; Zhou, Yicong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-5c1ab7b26602d4f2442d0ce54b607ff8c99f4554a985461eb0bb0d1f55988d4d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Cameras</topic><topic>Data</topic><topic>Dictionaries</topic><topic>Feature extraction</topic><topic>Hessian regularization</topic><topic>Image recognition</topic><topic>Laplace equations</topic><topic>Learning</topic><topic>Machine learning</topic><topic>Manifolds</topic><topic>multitask dictionary learning</topic><topic>Object recognition</topic><topic>Regularization</topic><topic>Remote sensing</topic><topic>remote sensing (RS) image recognition</topic><topic>Representations</topic><topic>Task analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Feng, Guanhua</creatorcontrib><creatorcontrib>Liu, Weifeng</creatorcontrib><creatorcontrib>Li, Shuying</creatorcontrib><creatorcontrib>Tao, Dapeng</creatorcontrib><creatorcontrib>Zhou, Yicong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE geoscience and remote sensing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Feng, Guanhua</au><au>Liu, Weifeng</au><au>Li, Shuying</au><au>Tao, Dapeng</au><au>Zhou, Yicong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hessian-Regularized Multitask Dictionary Learning for Remote Sensing Image Recognition</atitle><jtitle>IEEE geoscience and remote sensing letters</jtitle><stitle>LGRS</stitle><date>2019-05-01</date><risdate>2019</risdate><volume>16</volume><issue>5</issue><spage>821</spage><epage>825</epage><pages>821-825</pages><issn>1545-598X</issn><eissn>1558-0571</eissn><coden>IGRSBY</coden><abstract>Learning effective image representations is a vital issue for remote sensing (RS) image recognition tasks. Although numerous algorithms have been proposed, it is still challenging due to the limited labeled data. One representative work is the Laplacian-regularized multitask dictionary learning (LR-MTDL) that employs graph Laplacian regularization terms to fully utilize both the labeled and unlabeled information. However, it probably conduces to poor extrapolating power because Laplacian regularization biases the solution toward a constant function. In this letter, we propose a Hessian-regularized multitask dictionary learning to learn a source-data set-shared but target-data set-biased representation for RS image recognition. Particularly, Hessian can properly exploit the intrinsic local geometry of the data manifold and finally leverage the performance. Extensive experiments on four RS image data sets validate the effectiveness of the proposed method by comparing with baseline algorithms including single-task dictionary learning and LR-MTDL.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LGRS.2018.2881834</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-5388-9080</orcidid><orcidid>https://orcid.org/0000-0003-0783-5273</orcidid><orcidid>https://orcid.org/0000-0003-3994-2874</orcidid><orcidid>https://orcid.org/0000-0002-4487-6384</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1545-598X
ispartof IEEE geoscience and remote sensing letters, 2019-05, Vol.16 (5), p.821-825
issn 1545-598X
1558-0571
language eng
recordid cdi_proquest_journals_2215165203
source IEEE Electronic Library (IEL)
subjects Algorithms
Cameras
Data
Dictionaries
Feature extraction
Hessian regularization
Image recognition
Laplace equations
Learning
Machine learning
Manifolds
multitask dictionary learning
Object recognition
Regularization
Remote sensing
remote sensing (RS) image recognition
Representations
Task analysis
title Hessian-Regularized Multitask Dictionary Learning for Remote Sensing Image Recognition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T11%3A42%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hessian-Regularized%20Multitask%20Dictionary%20Learning%20for%20Remote%20Sensing%20Image%20Recognition&rft.jtitle=IEEE%20geoscience%20and%20remote%20sensing%20letters&rft.au=Feng,%20Guanhua&rft.date=2019-05-01&rft.volume=16&rft.issue=5&rft.spage=821&rft.epage=825&rft.pages=821-825&rft.issn=1545-598X&rft.eissn=1558-0571&rft.coden=IGRSBY&rft_id=info:doi/10.1109/LGRS.2018.2881834&rft_dat=%3Cproquest_RIE%3E2215165203%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2215165203&rft_id=info:pmid/&rft_ieee_id=8565932&rfr_iscdi=true