Ship Detection in SAR Images Based on Maxtree Representation and Graph Signal Processing

This paper discusses an image processing architecture and tools to address the problem of ship detection in synthetic-aperture radar images. The detection strategy relies on a tree-based representation of images, here a Maxtree, and graph signal processing tools. Radiometric as well as geometric att...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing 2019-05, Vol.57 (5), p.2709-2724
Hauptverfasser: Salembier, Philippe, Liesegang, Sergi, Lopez-Martinez, Carlos
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2724
container_issue 5
container_start_page 2709
container_title IEEE transactions on geoscience and remote sensing
container_volume 57
creator Salembier, Philippe
Liesegang, Sergi
Lopez-Martinez, Carlos
description This paper discusses an image processing architecture and tools to address the problem of ship detection in synthetic-aperture radar images. The detection strategy relies on a tree-based representation of images, here a Maxtree, and graph signal processing tools. Radiometric as well as geometric attributes are evaluated and associated with the Maxtree nodes. They form graph attribute signals which are processed with graph filters. The goal of this filtering step is to exploit the correlation existing between attribute values on neighboring tree nodes. Considering that trees are specific graphs where the connectivity toward ancestors and descendants may have a different meaning, we analyze several linear, nonlinear, and morphological filtering strategies. Beside graph filters , two new filtering notions emerge from this analysis: tree and branch filters . Finally, we discuss a ship detection architecture that involves graph signal filters and machine learning tools. This architecture demonstrates the interest of applying graph signal processing tools on the tree-based representation of images and of going beyond classical graph filters. The resulting approach significantly outperforms state-of-the-art algorithms. Finally, a MATLAB toolbox allowing users to experiment with the tools discussed in this paper on Maxtree or Mintree has been created and made public.
doi_str_mv 10.1109/TGRS.2018.2876603
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2215067133</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8529215</ieee_id><sourcerecordid>2215067133</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-1b1475321ba0d0037aea728fef44557c8a1a495d5ed02483782a99bca7e06a883</originalsourceid><addsrcrecordid>eNpNkE1Lw0AQhhdRsFZ_gHhZ8Jy6n9nNsX7VQkVpK3hbpptpm9ImcTcF_femtqiHYZhhnpfhIeSSsx7nLLuZDsaTnmDc9oQ1acrkEelwrW3CUqWOSYfxLE2EzcQpOYtxxRhXmpsOeZ8si5reY4O-KaqSFiWd9Md0uIEFRnoLEXParp_hswmIdIx1wIhlAz_XUOZ0EKBe0kmxKGFNX0PlMcaiXJyTkzmsI14cepe8PT5M756S0ctgeNcfJV4a2yR8xpXRUvAZsJwxaQDBCDvHuVJaG2-Bg8p0rjFnQtmWEZBlMw8GWQrWyi7h-1wft94F9Bg8NK6C4m_YlWBGOCnTLFUtc71n6lB9bDE2blVtQ_t_dEJwzVLDpfyXHKoYA85dHYoNhC_HmdtJdzvpbifdHaS3zNWeKRDx995qkbW58hsSKnwc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2215067133</pqid></control><display><type>article</type><title>Ship Detection in SAR Images Based on Maxtree Representation and Graph Signal Processing</title><source>IEEE Electronic Library (IEL)</source><creator>Salembier, Philippe ; Liesegang, Sergi ; Lopez-Martinez, Carlos</creator><creatorcontrib>Salembier, Philippe ; Liesegang, Sergi ; Lopez-Martinez, Carlos</creatorcontrib><description>This paper discusses an image processing architecture and tools to address the problem of ship detection in synthetic-aperture radar images. The detection strategy relies on a tree-based representation of images, here a Maxtree, and graph signal processing tools. Radiometric as well as geometric attributes are evaluated and associated with the Maxtree nodes. They form graph attribute signals which are processed with graph filters. The goal of this filtering step is to exploit the correlation existing between attribute values on neighboring tree nodes. Considering that trees are specific graphs where the connectivity toward ancestors and descendants may have a different meaning, we analyze several linear, nonlinear, and morphological filtering strategies. Beside graph filters , two new filtering notions emerge from this analysis: tree and branch filters . Finally, we discuss a ship detection architecture that involves graph signal filters and machine learning tools. This architecture demonstrates the interest of applying graph signal processing tools on the tree-based representation of images and of going beyond classical graph filters. The resulting approach significantly outperforms state-of-the-art algorithms. Finally, a MATLAB toolbox allowing users to experiment with the tools discussed in this paper on Maxtree or Mintree has been created and made public.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2018.2876603</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Architecture ; Branch filter ; Ciències de la terra ; Ciències de la terra i de la vida ; Correlation ; Detection ; Earth sciences ; Enginyeria agroalimentària ; Enginyeria de la telecomunicació ; Filters ; Filtration ; Graph filter ; Graph signal processing ; Graphical representations ; Graphs ; Image detection ; Image processing ; Information processing ; Learning algorithms ; Machine learning ; Marine vehicles ; Maxtree ; Nodes ; Nonlinear analysis ; Object detection ; Radar detection ; Radar imaging ; Radiocomunicació i exploració electromagnètica ; Radiometry ; Remote sensing ; SAR (radar) ; Ship detection ; Ships ; Signal processing ; support vector machine (SVM) ; Synthetic aperture radar ; synthetic-aperture radar (SAR) ; Teledetecció ; Tree filter ; Trees ; Àrees temàtiques de la UPC</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2019-05, Vol.57 (5), p.2709-2724</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><rights>info:eu-repo/semantics/openAccess</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c378t-1b1475321ba0d0037aea728fef44557c8a1a495d5ed02483782a99bca7e06a883</citedby><cites>FETCH-LOGICAL-c378t-1b1475321ba0d0037aea728fef44557c8a1a495d5ed02483782a99bca7e06a883</cites><orcidid>0000-0001-8884-9604 ; 0000-0002-7806-4755</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8529215$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,796,885,26974,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8529215$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Salembier, Philippe</creatorcontrib><creatorcontrib>Liesegang, Sergi</creatorcontrib><creatorcontrib>Lopez-Martinez, Carlos</creatorcontrib><title>Ship Detection in SAR Images Based on Maxtree Representation and Graph Signal Processing</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>This paper discusses an image processing architecture and tools to address the problem of ship detection in synthetic-aperture radar images. The detection strategy relies on a tree-based representation of images, here a Maxtree, and graph signal processing tools. Radiometric as well as geometric attributes are evaluated and associated with the Maxtree nodes. They form graph attribute signals which are processed with graph filters. The goal of this filtering step is to exploit the correlation existing between attribute values on neighboring tree nodes. Considering that trees are specific graphs where the connectivity toward ancestors and descendants may have a different meaning, we analyze several linear, nonlinear, and morphological filtering strategies. Beside graph filters , two new filtering notions emerge from this analysis: tree and branch filters . Finally, we discuss a ship detection architecture that involves graph signal filters and machine learning tools. This architecture demonstrates the interest of applying graph signal processing tools on the tree-based representation of images and of going beyond classical graph filters. The resulting approach significantly outperforms state-of-the-art algorithms. Finally, a MATLAB toolbox allowing users to experiment with the tools discussed in this paper on Maxtree or Mintree has been created and made public.</description><subject>Algorithms</subject><subject>Architecture</subject><subject>Branch filter</subject><subject>Ciències de la terra</subject><subject>Ciències de la terra i de la vida</subject><subject>Correlation</subject><subject>Detection</subject><subject>Earth sciences</subject><subject>Enginyeria agroalimentària</subject><subject>Enginyeria de la telecomunicació</subject><subject>Filters</subject><subject>Filtration</subject><subject>Graph filter</subject><subject>Graph signal processing</subject><subject>Graphical representations</subject><subject>Graphs</subject><subject>Image detection</subject><subject>Image processing</subject><subject>Information processing</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Marine vehicles</subject><subject>Maxtree</subject><subject>Nodes</subject><subject>Nonlinear analysis</subject><subject>Object detection</subject><subject>Radar detection</subject><subject>Radar imaging</subject><subject>Radiocomunicació i exploració electromagnètica</subject><subject>Radiometry</subject><subject>Remote sensing</subject><subject>SAR (radar)</subject><subject>Ship detection</subject><subject>Ships</subject><subject>Signal processing</subject><subject>support vector machine (SVM)</subject><subject>Synthetic aperture radar</subject><subject>synthetic-aperture radar (SAR)</subject><subject>Teledetecció</subject><subject>Tree filter</subject><subject>Trees</subject><subject>Àrees temàtiques de la UPC</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>XX2</sourceid><recordid>eNpNkE1Lw0AQhhdRsFZ_gHhZ8Jy6n9nNsX7VQkVpK3hbpptpm9ImcTcF_femtqiHYZhhnpfhIeSSsx7nLLuZDsaTnmDc9oQ1acrkEelwrW3CUqWOSYfxLE2EzcQpOYtxxRhXmpsOeZ8si5reY4O-KaqSFiWd9Md0uIEFRnoLEXParp_hswmIdIx1wIhlAz_XUOZ0EKBe0kmxKGFNX0PlMcaiXJyTkzmsI14cepe8PT5M756S0ctgeNcfJV4a2yR8xpXRUvAZsJwxaQDBCDvHuVJaG2-Bg8p0rjFnQtmWEZBlMw8GWQrWyi7h-1wft94F9Bg8NK6C4m_YlWBGOCnTLFUtc71n6lB9bDE2blVtQ_t_dEJwzVLDpfyXHKoYA85dHYoNhC_HmdtJdzvpbifdHaS3zNWeKRDx995qkbW58hsSKnwc</recordid><startdate>20190501</startdate><enddate>20190501</enddate><creator>Salembier, Philippe</creator><creator>Liesegang, Sergi</creator><creator>Lopez-Martinez, Carlos</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>Institute of Electrical and Electronics Engineers (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>XX2</scope><orcidid>https://orcid.org/0000-0001-8884-9604</orcidid><orcidid>https://orcid.org/0000-0002-7806-4755</orcidid></search><sort><creationdate>20190501</creationdate><title>Ship Detection in SAR Images Based on Maxtree Representation and Graph Signal Processing</title><author>Salembier, Philippe ; Liesegang, Sergi ; Lopez-Martinez, Carlos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-1b1475321ba0d0037aea728fef44557c8a1a495d5ed02483782a99bca7e06a883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Architecture</topic><topic>Branch filter</topic><topic>Ciències de la terra</topic><topic>Ciències de la terra i de la vida</topic><topic>Correlation</topic><topic>Detection</topic><topic>Earth sciences</topic><topic>Enginyeria agroalimentària</topic><topic>Enginyeria de la telecomunicació</topic><topic>Filters</topic><topic>Filtration</topic><topic>Graph filter</topic><topic>Graph signal processing</topic><topic>Graphical representations</topic><topic>Graphs</topic><topic>Image detection</topic><topic>Image processing</topic><topic>Information processing</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Marine vehicles</topic><topic>Maxtree</topic><topic>Nodes</topic><topic>Nonlinear analysis</topic><topic>Object detection</topic><topic>Radar detection</topic><topic>Radar imaging</topic><topic>Radiocomunicació i exploració electromagnètica</topic><topic>Radiometry</topic><topic>Remote sensing</topic><topic>SAR (radar)</topic><topic>Ship detection</topic><topic>Ships</topic><topic>Signal processing</topic><topic>support vector machine (SVM)</topic><topic>Synthetic aperture radar</topic><topic>synthetic-aperture radar (SAR)</topic><topic>Teledetecció</topic><topic>Tree filter</topic><topic>Trees</topic><topic>Àrees temàtiques de la UPC</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Salembier, Philippe</creatorcontrib><creatorcontrib>Liesegang, Sergi</creatorcontrib><creatorcontrib>Lopez-Martinez, Carlos</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Recercat</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Salembier, Philippe</au><au>Liesegang, Sergi</au><au>Lopez-Martinez, Carlos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ship Detection in SAR Images Based on Maxtree Representation and Graph Signal Processing</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2019-05-01</date><risdate>2019</risdate><volume>57</volume><issue>5</issue><spage>2709</spage><epage>2724</epage><pages>2709-2724</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>This paper discusses an image processing architecture and tools to address the problem of ship detection in synthetic-aperture radar images. The detection strategy relies on a tree-based representation of images, here a Maxtree, and graph signal processing tools. Radiometric as well as geometric attributes are evaluated and associated with the Maxtree nodes. They form graph attribute signals which are processed with graph filters. The goal of this filtering step is to exploit the correlation existing between attribute values on neighboring tree nodes. Considering that trees are specific graphs where the connectivity toward ancestors and descendants may have a different meaning, we analyze several linear, nonlinear, and morphological filtering strategies. Beside graph filters , two new filtering notions emerge from this analysis: tree and branch filters . Finally, we discuss a ship detection architecture that involves graph signal filters and machine learning tools. This architecture demonstrates the interest of applying graph signal processing tools on the tree-based representation of images and of going beyond classical graph filters. The resulting approach significantly outperforms state-of-the-art algorithms. Finally, a MATLAB toolbox allowing users to experiment with the tools discussed in this paper on Maxtree or Mintree has been created and made public.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2018.2876603</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-8884-9604</orcidid><orcidid>https://orcid.org/0000-0002-7806-4755</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0196-2892
ispartof IEEE transactions on geoscience and remote sensing, 2019-05, Vol.57 (5), p.2709-2724
issn 0196-2892
1558-0644
language eng
recordid cdi_proquest_journals_2215067133
source IEEE Electronic Library (IEL)
subjects Algorithms
Architecture
Branch filter
Ciències de la terra
Ciències de la terra i de la vida
Correlation
Detection
Earth sciences
Enginyeria agroalimentària
Enginyeria de la telecomunicació
Filters
Filtration
Graph filter
Graph signal processing
Graphical representations
Graphs
Image detection
Image processing
Information processing
Learning algorithms
Machine learning
Marine vehicles
Maxtree
Nodes
Nonlinear analysis
Object detection
Radar detection
Radar imaging
Radiocomunicació i exploració electromagnètica
Radiometry
Remote sensing
SAR (radar)
Ship detection
Ships
Signal processing
support vector machine (SVM)
Synthetic aperture radar
synthetic-aperture radar (SAR)
Teledetecció
Tree filter
Trees
Àrees temàtiques de la UPC
title Ship Detection in SAR Images Based on Maxtree Representation and Graph Signal Processing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T13%3A14%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ship%20Detection%20in%20SAR%20Images%20Based%20on%20Maxtree%20Representation%20and%20Graph%20Signal%20Processing&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Salembier,%20Philippe&rft.date=2019-05-01&rft.volume=57&rft.issue=5&rft.spage=2709&rft.epage=2724&rft.pages=2709-2724&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2018.2876603&rft_dat=%3Cproquest_RIE%3E2215067133%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2215067133&rft_id=info:pmid/&rft_ieee_id=8529215&rfr_iscdi=true