The matching augmentation problem: a 7 4 -approximation algorithm

We present a 74 approximation algorithm for the matching augmentation problem (MAP): given a multi-graph with edges of cost either zero or one such that the edges of cost zero form a matching, find a 2-edge connected spanning subgraph (2-ECSS) of minimum cost. We first present a reduction of any giv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical programming 2020-07, p.1-40
Hauptverfasser: Cheriyan, J, Dippel, J, Grandoni, F, Khan, A, Narayan, V V
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 40
container_issue
container_start_page 1
container_title Mathematical programming
container_volume
creator Cheriyan, J
Dippel, J
Grandoni, F
Khan, A
Narayan, V V
description We present a 74 approximation algorithm for the matching augmentation problem (MAP): given a multi-graph with edges of cost either zero or one such that the edges of cost zero form a matching, find a 2-edge connected spanning subgraph (2-ECSS) of minimum cost. We first present a reduction of any given MAP instance to a collection of well-structured MAP instances such that the approximation guarantee is preserved. Then we present a 74 approximation algorithm for a well-structured MAP instance. The algorithm starts with a min-cost 2-edge cover and then applies ear-augmentation steps. We analyze the cost of the ear-augmentations using an approach similar to the one proposed by Vempala and Vetta for the (unweighted) min-size 2-ECSS problem (in: Jansen and Khuller (eds.) Approximation Algorithms for Combinatorial Optimization, Third International Workshop, APPROX 2000, Proceedings, LNCS 1913, pp.262–273, Springer, Berlin, 2000).
doi_str_mv 10.1007/s10107-019-01394-z
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2214668810</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2214668810</sourcerecordid><originalsourceid>FETCH-LOGICAL-p113t-9cf4324abdf4f9ea90512fe98c0177d07a77b917730014164d615b4d7db6551b3</originalsourceid><addsrcrecordid>eNotTstKBDEQDKLguPoDngKeo92TTjLxtiy-YMHLel6SmcxjmZfzAPHrDayHooqqorsYu0d4RADzNCMgGAFoI6Ql8XvBEiSpBWnSlywBSJVQGuGa3czzCSDWsixh20MdeOeWvG76iru16kK_uKUZej5Og29D98wdN5y4cGN0fprunLq2GqZmqbtbdlW6dg53_7xhX68vh9272H--fey2ezEiykXYvCSZkvNFSaUNzoLCtAw2ywGNKcA4Y7yNUsZphJoKjcpTYQqvlUIvN-zhfDeu-F7DvBxPwzr18eUxTZG0zjIE-QeFb0sh</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2214668810</pqid></control><display><type>article</type><title>The matching augmentation problem: a 7 4 -approximation algorithm</title><source>SpringerNature Journals</source><source>EBSCOhost Business Source Complete</source><creator>Cheriyan, J ; Dippel, J ; Grandoni, F ; Khan, A ; Narayan, V V</creator><creatorcontrib>Cheriyan, J ; Dippel, J ; Grandoni, F ; Khan, A ; Narayan, V V</creatorcontrib><description>We present a 74 approximation algorithm for the matching augmentation problem (MAP): given a multi-graph with edges of cost either zero or one such that the edges of cost zero form a matching, find a 2-edge connected spanning subgraph (2-ECSS) of minimum cost. We first present a reduction of any given MAP instance to a collection of well-structured MAP instances such that the approximation guarantee is preserved. Then we present a 74 approximation algorithm for a well-structured MAP instance. The algorithm starts with a min-cost 2-edge cover and then applies ear-augmentation steps. We analyze the cost of the ear-augmentations using an approach similar to the one proposed by Vempala and Vetta for the (unweighted) min-size 2-ECSS problem (in: Jansen and Khuller (eds.) Approximation Algorithms for Combinatorial Optimization, Third International Workshop, APPROX 2000, Proceedings, LNCS 1913, pp.262–273, Springer, Berlin, 2000).</description><identifier>ISSN: 0025-5610</identifier><identifier>EISSN: 1436-4646</identifier><identifier>DOI: 10.1007/s10107-019-01394-z</identifier><language>eng</language><publisher>Heidelberg: Springer Nature B.V</publisher><subject>Algorithms ; Approximation ; Augmentation ; Combinatorial analysis ; Cost analysis ; Decision trees ; Ear ; Graph theory ; Matching ; Mathematical analysis ; Minimum cost ; Optimization</subject><ispartof>Mathematical programming, 2020-07, p.1-40</ispartof><rights>Mathematical Programming is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Cheriyan, J</creatorcontrib><creatorcontrib>Dippel, J</creatorcontrib><creatorcontrib>Grandoni, F</creatorcontrib><creatorcontrib>Khan, A</creatorcontrib><creatorcontrib>Narayan, V V</creatorcontrib><title>The matching augmentation problem: a 7 4 -approximation algorithm</title><title>Mathematical programming</title><description>We present a 74 approximation algorithm for the matching augmentation problem (MAP): given a multi-graph with edges of cost either zero or one such that the edges of cost zero form a matching, find a 2-edge connected spanning subgraph (2-ECSS) of minimum cost. We first present a reduction of any given MAP instance to a collection of well-structured MAP instances such that the approximation guarantee is preserved. Then we present a 74 approximation algorithm for a well-structured MAP instance. The algorithm starts with a min-cost 2-edge cover and then applies ear-augmentation steps. We analyze the cost of the ear-augmentations using an approach similar to the one proposed by Vempala and Vetta for the (unweighted) min-size 2-ECSS problem (in: Jansen and Khuller (eds.) Approximation Algorithms for Combinatorial Optimization, Third International Workshop, APPROX 2000, Proceedings, LNCS 1913, pp.262–273, Springer, Berlin, 2000).</description><subject>Algorithms</subject><subject>Approximation</subject><subject>Augmentation</subject><subject>Combinatorial analysis</subject><subject>Cost analysis</subject><subject>Decision trees</subject><subject>Ear</subject><subject>Graph theory</subject><subject>Matching</subject><subject>Mathematical analysis</subject><subject>Minimum cost</subject><subject>Optimization</subject><issn>0025-5610</issn><issn>1436-4646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNotTstKBDEQDKLguPoDngKeo92TTjLxtiy-YMHLel6SmcxjmZfzAPHrDayHooqqorsYu0d4RADzNCMgGAFoI6Ql8XvBEiSpBWnSlywBSJVQGuGa3czzCSDWsixh20MdeOeWvG76iru16kK_uKUZej5Og29D98wdN5y4cGN0fprunLq2GqZmqbtbdlW6dg53_7xhX68vh9272H--fey2ezEiykXYvCSZkvNFSaUNzoLCtAw2ywGNKcA4Y7yNUsZphJoKjcpTYQqvlUIvN-zhfDeu-F7DvBxPwzr18eUxTZG0zjIE-QeFb0sh</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Cheriyan, J</creator><creator>Dippel, J</creator><creator>Grandoni, F</creator><creator>Khan, A</creator><creator>Narayan, V V</creator><general>Springer Nature B.V</general><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20200701</creationdate><title>The matching augmentation problem: a 7 4 -approximation algorithm</title><author>Cheriyan, J ; Dippel, J ; Grandoni, F ; Khan, A ; Narayan, V V</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p113t-9cf4324abdf4f9ea90512fe98c0177d07a77b917730014164d615b4d7db6551b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Approximation</topic><topic>Augmentation</topic><topic>Combinatorial analysis</topic><topic>Cost analysis</topic><topic>Decision trees</topic><topic>Ear</topic><topic>Graph theory</topic><topic>Matching</topic><topic>Mathematical analysis</topic><topic>Minimum cost</topic><topic>Optimization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheriyan, J</creatorcontrib><creatorcontrib>Dippel, J</creatorcontrib><creatorcontrib>Grandoni, F</creatorcontrib><creatorcontrib>Khan, A</creatorcontrib><creatorcontrib>Narayan, V V</creatorcontrib><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Mathematical programming</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheriyan, J</au><au>Dippel, J</au><au>Grandoni, F</au><au>Khan, A</au><au>Narayan, V V</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The matching augmentation problem: a 7 4 -approximation algorithm</atitle><jtitle>Mathematical programming</jtitle><date>2020-07-01</date><risdate>2020</risdate><spage>1</spage><epage>40</epage><pages>1-40</pages><issn>0025-5610</issn><eissn>1436-4646</eissn><abstract>We present a 74 approximation algorithm for the matching augmentation problem (MAP): given a multi-graph with edges of cost either zero or one such that the edges of cost zero form a matching, find a 2-edge connected spanning subgraph (2-ECSS) of minimum cost. We first present a reduction of any given MAP instance to a collection of well-structured MAP instances such that the approximation guarantee is preserved. Then we present a 74 approximation algorithm for a well-structured MAP instance. The algorithm starts with a min-cost 2-edge cover and then applies ear-augmentation steps. We analyze the cost of the ear-augmentations using an approach similar to the one proposed by Vempala and Vetta for the (unweighted) min-size 2-ECSS problem (in: Jansen and Khuller (eds.) Approximation Algorithms for Combinatorial Optimization, Third International Workshop, APPROX 2000, Proceedings, LNCS 1913, pp.262–273, Springer, Berlin, 2000).</abstract><cop>Heidelberg</cop><pub>Springer Nature B.V</pub><doi>10.1007/s10107-019-01394-z</doi><tpages>40</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0025-5610
ispartof Mathematical programming, 2020-07, p.1-40
issn 0025-5610
1436-4646
language eng
recordid cdi_proquest_journals_2214668810
source SpringerNature Journals; EBSCOhost Business Source Complete
subjects Algorithms
Approximation
Augmentation
Combinatorial analysis
Cost analysis
Decision trees
Ear
Graph theory
Matching
Mathematical analysis
Minimum cost
Optimization
title The matching augmentation problem: a 7 4 -approximation algorithm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T20%3A18%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20matching%20augmentation%20problem:%20a%207%204%20-approximation%20algorithm&rft.jtitle=Mathematical%20programming&rft.au=Cheriyan,%20J&rft.date=2020-07-01&rft.spage=1&rft.epage=40&rft.pages=1-40&rft.issn=0025-5610&rft.eissn=1436-4646&rft_id=info:doi/10.1007/s10107-019-01394-z&rft_dat=%3Cproquest%3E2214668810%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2214668810&rft_id=info:pmid/&rfr_iscdi=true