A correspondence between compressible and incompressible plane elastostatics
It is shown that a heretofore seemingly unnoticed correspondence (or analogy) exists between the traction boundary value problem for compressible media and the displacement boundary value problem for incompressible media occupying the same domain, in plane, isotropic, linear elastostatics. The Airy...
Gespeichert in:
Veröffentlicht in: | Acta mechanica 2019-07, Vol.230 (7), p.2549-2562 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2562 |
---|---|
container_issue | 7 |
container_start_page | 2549 |
container_title | Acta mechanica |
container_volume | 230 |
creator | Honein, Tony Honein, Elie Najjar, Michel Rai, Habib |
description | It is shown that a heretofore seemingly unnoticed correspondence (or analogy) exists between the traction boundary value problem for compressible media and the displacement boundary value problem for incompressible media occupying the same domain, in plane, isotropic, linear elastostatics. The Airy stress function, which satisfies equilibrium identically, has to be biharmonic in order to satisfy the compatibility condition in a compressible body. Correspondingly, a displacement potential function, which satisfies the incompressibility condition identically, has to be biharmonic in order to satisfy equilibrium. Since Stokes flow is governed by identical relations as incompressible plane elasticity, if displacement is interpreted as velocity and the shear modulus as dynamic viscosity, the correspondence extends to that between compressible elasticity and Stokes flow for boundary value problems indicated above. This analogy provides a rare example of a constrained system which is equivalent to the same system without the constraint. |
doi_str_mv | 10.1007/s00707-019-02421-y |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2214649440</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A589025836</galeid><sourcerecordid>A589025836</sourcerecordid><originalsourceid>FETCH-LOGICAL-c309t-a3b3a718236dffc1514214f9ba838a46eb3895aa53d0370365e334a4867908943</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AU8Fz9VJk-bjuCx-wYIXPYc0nS5duklNusj-e6MVxIsEJszL-8wMLyHXFG4pgLxLuYAsgeoSKl7R8nhCFlTkVmgmT8kCAGhZawnn5CKlXe4qyemCbFaFCzFiGoNv0TssGpw-EH2W92PWU98MWFjfFr3_I42D9VjgYNMU0mSn3qVLctbZIeHVz78kbw_3r-uncvPy-LxebUrHQE-lZQ2zkqqKibbrHK1pvph3urGKKcsFNkzp2tqatcAkMFEjY9xyJaQGpTlbkpt57hjD-wHTZHbhEH1eaao8SXDNOWTX7eza2gFN77swRevya3Hfu-Cx67O-qpWGqlZMZKCaARdDShE7M8Z-b-PRUDBfMZs5ZpNjNt8xm2OG2AylbPZbjL-3_EN9Ak5yf-Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2214649440</pqid></control><display><type>article</type><title>A correspondence between compressible and incompressible plane elastostatics</title><source>SpringerLink Journals - AutoHoldings</source><creator>Honein, Tony ; Honein, Elie ; Najjar, Michel ; Rai, Habib</creator><creatorcontrib>Honein, Tony ; Honein, Elie ; Najjar, Michel ; Rai, Habib</creatorcontrib><description>It is shown that a heretofore seemingly unnoticed correspondence (or analogy) exists between the traction boundary value problem for compressible media and the displacement boundary value problem for incompressible media occupying the same domain, in plane, isotropic, linear elastostatics. The Airy stress function, which satisfies equilibrium identically, has to be biharmonic in order to satisfy the compatibility condition in a compressible body. Correspondingly, a displacement potential function, which satisfies the incompressibility condition identically, has to be biharmonic in order to satisfy equilibrium. Since Stokes flow is governed by identical relations as incompressible plane elasticity, if displacement is interpreted as velocity and the shear modulus as dynamic viscosity, the correspondence extends to that between compressible elasticity and Stokes flow for boundary value problems indicated above. This analogy provides a rare example of a constrained system which is equivalent to the same system without the constraint.</description><identifier>ISSN: 0001-5970</identifier><identifier>EISSN: 1619-6937</identifier><identifier>DOI: 10.1007/s00707-019-02421-y</identifier><language>eng</language><publisher>Vienna: Springer Vienna</publisher><subject>Boundary value problems ; Classical and Continuum Physics ; Compressibility ; Control ; Displacement ; Dynamical Systems ; Elasticity ; Elastostatics ; Engineering ; Engineering Thermodynamics ; Fluid dynamics ; Fluid flow ; Flying-machines ; Heat and Mass Transfer ; Incompressibility ; Incompressible flow ; Original Paper ; Shear modulus ; Solid Mechanics ; Stokes flow ; Stress functions ; Theoretical and Applied Mechanics ; Vibration</subject><ispartof>Acta mechanica, 2019-07, Vol.230 (7), p.2549-2562</ispartof><rights>Springer-Verlag GmbH Austria, part of Springer Nature 2019</rights><rights>COPYRIGHT 2019 Springer</rights><rights>Acta Mechanica is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c309t-a3b3a718236dffc1514214f9ba838a46eb3895aa53d0370365e334a4867908943</cites><orcidid>0000-0001-8936-3788</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00707-019-02421-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00707-019-02421-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Honein, Tony</creatorcontrib><creatorcontrib>Honein, Elie</creatorcontrib><creatorcontrib>Najjar, Michel</creatorcontrib><creatorcontrib>Rai, Habib</creatorcontrib><title>A correspondence between compressible and incompressible plane elastostatics</title><title>Acta mechanica</title><addtitle>Acta Mech</addtitle><description>It is shown that a heretofore seemingly unnoticed correspondence (or analogy) exists between the traction boundary value problem for compressible media and the displacement boundary value problem for incompressible media occupying the same domain, in plane, isotropic, linear elastostatics. The Airy stress function, which satisfies equilibrium identically, has to be biharmonic in order to satisfy the compatibility condition in a compressible body. Correspondingly, a displacement potential function, which satisfies the incompressibility condition identically, has to be biharmonic in order to satisfy equilibrium. Since Stokes flow is governed by identical relations as incompressible plane elasticity, if displacement is interpreted as velocity and the shear modulus as dynamic viscosity, the correspondence extends to that between compressible elasticity and Stokes flow for boundary value problems indicated above. This analogy provides a rare example of a constrained system which is equivalent to the same system without the constraint.</description><subject>Boundary value problems</subject><subject>Classical and Continuum Physics</subject><subject>Compressibility</subject><subject>Control</subject><subject>Displacement</subject><subject>Dynamical Systems</subject><subject>Elasticity</subject><subject>Elastostatics</subject><subject>Engineering</subject><subject>Engineering Thermodynamics</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Flying-machines</subject><subject>Heat and Mass Transfer</subject><subject>Incompressibility</subject><subject>Incompressible flow</subject><subject>Original Paper</subject><subject>Shear modulus</subject><subject>Solid Mechanics</subject><subject>Stokes flow</subject><subject>Stress functions</subject><subject>Theoretical and Applied Mechanics</subject><subject>Vibration</subject><issn>0001-5970</issn><issn>1619-6937</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kE1LxDAQhoMouK7-AU8Fz9VJk-bjuCx-wYIXPYc0nS5duklNusj-e6MVxIsEJszL-8wMLyHXFG4pgLxLuYAsgeoSKl7R8nhCFlTkVmgmT8kCAGhZawnn5CKlXe4qyemCbFaFCzFiGoNv0TssGpw-EH2W92PWU98MWFjfFr3_I42D9VjgYNMU0mSn3qVLctbZIeHVz78kbw_3r-uncvPy-LxebUrHQE-lZQ2zkqqKibbrHK1pvph3urGKKcsFNkzp2tqatcAkMFEjY9xyJaQGpTlbkpt57hjD-wHTZHbhEH1eaao8SXDNOWTX7eza2gFN77swRevya3Hfu-Cx67O-qpWGqlZMZKCaARdDShE7M8Z-b-PRUDBfMZs5ZpNjNt8xm2OG2AylbPZbjL-3_EN9Ak5yf-Q</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>Honein, Tony</creator><creator>Honein, Elie</creator><creator>Najjar, Michel</creator><creator>Rai, Habib</creator><general>Springer Vienna</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7XB</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0001-8936-3788</orcidid></search><sort><creationdate>20190701</creationdate><title>A correspondence between compressible and incompressible plane elastostatics</title><author>Honein, Tony ; Honein, Elie ; Najjar, Michel ; Rai, Habib</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c309t-a3b3a718236dffc1514214f9ba838a46eb3895aa53d0370365e334a4867908943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Boundary value problems</topic><topic>Classical and Continuum Physics</topic><topic>Compressibility</topic><topic>Control</topic><topic>Displacement</topic><topic>Dynamical Systems</topic><topic>Elasticity</topic><topic>Elastostatics</topic><topic>Engineering</topic><topic>Engineering Thermodynamics</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Flying-machines</topic><topic>Heat and Mass Transfer</topic><topic>Incompressibility</topic><topic>Incompressible flow</topic><topic>Original Paper</topic><topic>Shear modulus</topic><topic>Solid Mechanics</topic><topic>Stokes flow</topic><topic>Stress functions</topic><topic>Theoretical and Applied Mechanics</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Honein, Tony</creatorcontrib><creatorcontrib>Honein, Elie</creatorcontrib><creatorcontrib>Najjar, Michel</creatorcontrib><creatorcontrib>Rai, Habib</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database (ProQuest)</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Acta mechanica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Honein, Tony</au><au>Honein, Elie</au><au>Najjar, Michel</au><au>Rai, Habib</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A correspondence between compressible and incompressible plane elastostatics</atitle><jtitle>Acta mechanica</jtitle><stitle>Acta Mech</stitle><date>2019-07-01</date><risdate>2019</risdate><volume>230</volume><issue>7</issue><spage>2549</spage><epage>2562</epage><pages>2549-2562</pages><issn>0001-5970</issn><eissn>1619-6937</eissn><abstract>It is shown that a heretofore seemingly unnoticed correspondence (or analogy) exists between the traction boundary value problem for compressible media and the displacement boundary value problem for incompressible media occupying the same domain, in plane, isotropic, linear elastostatics. The Airy stress function, which satisfies equilibrium identically, has to be biharmonic in order to satisfy the compatibility condition in a compressible body. Correspondingly, a displacement potential function, which satisfies the incompressibility condition identically, has to be biharmonic in order to satisfy equilibrium. Since Stokes flow is governed by identical relations as incompressible plane elasticity, if displacement is interpreted as velocity and the shear modulus as dynamic viscosity, the correspondence extends to that between compressible elasticity and Stokes flow for boundary value problems indicated above. This analogy provides a rare example of a constrained system which is equivalent to the same system without the constraint.</abstract><cop>Vienna</cop><pub>Springer Vienna</pub><doi>10.1007/s00707-019-02421-y</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-8936-3788</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-5970 |
ispartof | Acta mechanica, 2019-07, Vol.230 (7), p.2549-2562 |
issn | 0001-5970 1619-6937 |
language | eng |
recordid | cdi_proquest_journals_2214649440 |
source | SpringerLink Journals - AutoHoldings |
subjects | Boundary value problems Classical and Continuum Physics Compressibility Control Displacement Dynamical Systems Elasticity Elastostatics Engineering Engineering Thermodynamics Fluid dynamics Fluid flow Flying-machines Heat and Mass Transfer Incompressibility Incompressible flow Original Paper Shear modulus Solid Mechanics Stokes flow Stress functions Theoretical and Applied Mechanics Vibration |
title | A correspondence between compressible and incompressible plane elastostatics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T16%3A06%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20correspondence%20between%20compressible%20and%20incompressible%20plane%20elastostatics&rft.jtitle=Acta%20mechanica&rft.au=Honein,%20Tony&rft.date=2019-07-01&rft.volume=230&rft.issue=7&rft.spage=2549&rft.epage=2562&rft.pages=2549-2562&rft.issn=0001-5970&rft.eissn=1619-6937&rft_id=info:doi/10.1007/s00707-019-02421-y&rft_dat=%3Cgale_proqu%3EA589025836%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2214649440&rft_id=info:pmid/&rft_galeid=A589025836&rfr_iscdi=true |