A correspondence between compressible and incompressible plane elastostatics

It is shown that a heretofore seemingly unnoticed correspondence (or analogy) exists between the traction boundary value problem for compressible media and the displacement boundary value problem for incompressible media occupying the same domain, in plane, isotropic, linear elastostatics. The Airy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta mechanica 2019-07, Vol.230 (7), p.2549-2562
Hauptverfasser: Honein, Tony, Honein, Elie, Najjar, Michel, Rai, Habib
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2562
container_issue 7
container_start_page 2549
container_title Acta mechanica
container_volume 230
creator Honein, Tony
Honein, Elie
Najjar, Michel
Rai, Habib
description It is shown that a heretofore seemingly unnoticed correspondence (or analogy) exists between the traction boundary value problem for compressible media and the displacement boundary value problem for incompressible media occupying the same domain, in plane, isotropic, linear elastostatics. The Airy stress function, which satisfies equilibrium identically, has to be biharmonic in order to satisfy the compatibility condition in a compressible body. Correspondingly, a displacement potential function, which satisfies the incompressibility condition identically, has to be biharmonic in order to satisfy equilibrium. Since Stokes flow is governed by identical relations as incompressible plane elasticity, if displacement is interpreted as velocity and the shear modulus as dynamic viscosity, the correspondence extends to that between compressible elasticity and Stokes flow for boundary value problems indicated above. This analogy provides a rare example of a constrained system which is equivalent to the same system without the constraint.
doi_str_mv 10.1007/s00707-019-02421-y
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2214649440</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A589025836</galeid><sourcerecordid>A589025836</sourcerecordid><originalsourceid>FETCH-LOGICAL-c309t-a3b3a718236dffc1514214f9ba838a46eb3895aa53d0370365e334a4867908943</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AU8Fz9VJk-bjuCx-wYIXPYc0nS5duklNusj-e6MVxIsEJszL-8wMLyHXFG4pgLxLuYAsgeoSKl7R8nhCFlTkVmgmT8kCAGhZawnn5CKlXe4qyemCbFaFCzFiGoNv0TssGpw-EH2W92PWU98MWFjfFr3_I42D9VjgYNMU0mSn3qVLctbZIeHVz78kbw_3r-uncvPy-LxebUrHQE-lZQ2zkqqKibbrHK1pvph3urGKKcsFNkzp2tqatcAkMFEjY9xyJaQGpTlbkpt57hjD-wHTZHbhEH1eaao8SXDNOWTX7eza2gFN77swRevya3Hfu-Cx67O-qpWGqlZMZKCaARdDShE7M8Z-b-PRUDBfMZs5ZpNjNt8xm2OG2AylbPZbjL-3_EN9Ak5yf-Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2214649440</pqid></control><display><type>article</type><title>A correspondence between compressible and incompressible plane elastostatics</title><source>SpringerLink Journals - AutoHoldings</source><creator>Honein, Tony ; Honein, Elie ; Najjar, Michel ; Rai, Habib</creator><creatorcontrib>Honein, Tony ; Honein, Elie ; Najjar, Michel ; Rai, Habib</creatorcontrib><description>It is shown that a heretofore seemingly unnoticed correspondence (or analogy) exists between the traction boundary value problem for compressible media and the displacement boundary value problem for incompressible media occupying the same domain, in plane, isotropic, linear elastostatics. The Airy stress function, which satisfies equilibrium identically, has to be biharmonic in order to satisfy the compatibility condition in a compressible body. Correspondingly, a displacement potential function, which satisfies the incompressibility condition identically, has to be biharmonic in order to satisfy equilibrium. Since Stokes flow is governed by identical relations as incompressible plane elasticity, if displacement is interpreted as velocity and the shear modulus as dynamic viscosity, the correspondence extends to that between compressible elasticity and Stokes flow for boundary value problems indicated above. This analogy provides a rare example of a constrained system which is equivalent to the same system without the constraint.</description><identifier>ISSN: 0001-5970</identifier><identifier>EISSN: 1619-6937</identifier><identifier>DOI: 10.1007/s00707-019-02421-y</identifier><language>eng</language><publisher>Vienna: Springer Vienna</publisher><subject>Boundary value problems ; Classical and Continuum Physics ; Compressibility ; Control ; Displacement ; Dynamical Systems ; Elasticity ; Elastostatics ; Engineering ; Engineering Thermodynamics ; Fluid dynamics ; Fluid flow ; Flying-machines ; Heat and Mass Transfer ; Incompressibility ; Incompressible flow ; Original Paper ; Shear modulus ; Solid Mechanics ; Stokes flow ; Stress functions ; Theoretical and Applied Mechanics ; Vibration</subject><ispartof>Acta mechanica, 2019-07, Vol.230 (7), p.2549-2562</ispartof><rights>Springer-Verlag GmbH Austria, part of Springer Nature 2019</rights><rights>COPYRIGHT 2019 Springer</rights><rights>Acta Mechanica is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c309t-a3b3a718236dffc1514214f9ba838a46eb3895aa53d0370365e334a4867908943</cites><orcidid>0000-0001-8936-3788</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00707-019-02421-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00707-019-02421-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Honein, Tony</creatorcontrib><creatorcontrib>Honein, Elie</creatorcontrib><creatorcontrib>Najjar, Michel</creatorcontrib><creatorcontrib>Rai, Habib</creatorcontrib><title>A correspondence between compressible and incompressible plane elastostatics</title><title>Acta mechanica</title><addtitle>Acta Mech</addtitle><description>It is shown that a heretofore seemingly unnoticed correspondence (or analogy) exists between the traction boundary value problem for compressible media and the displacement boundary value problem for incompressible media occupying the same domain, in plane, isotropic, linear elastostatics. The Airy stress function, which satisfies equilibrium identically, has to be biharmonic in order to satisfy the compatibility condition in a compressible body. Correspondingly, a displacement potential function, which satisfies the incompressibility condition identically, has to be biharmonic in order to satisfy equilibrium. Since Stokes flow is governed by identical relations as incompressible plane elasticity, if displacement is interpreted as velocity and the shear modulus as dynamic viscosity, the correspondence extends to that between compressible elasticity and Stokes flow for boundary value problems indicated above. This analogy provides a rare example of a constrained system which is equivalent to the same system without the constraint.</description><subject>Boundary value problems</subject><subject>Classical and Continuum Physics</subject><subject>Compressibility</subject><subject>Control</subject><subject>Displacement</subject><subject>Dynamical Systems</subject><subject>Elasticity</subject><subject>Elastostatics</subject><subject>Engineering</subject><subject>Engineering Thermodynamics</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Flying-machines</subject><subject>Heat and Mass Transfer</subject><subject>Incompressibility</subject><subject>Incompressible flow</subject><subject>Original Paper</subject><subject>Shear modulus</subject><subject>Solid Mechanics</subject><subject>Stokes flow</subject><subject>Stress functions</subject><subject>Theoretical and Applied Mechanics</subject><subject>Vibration</subject><issn>0001-5970</issn><issn>1619-6937</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kE1LxDAQhoMouK7-AU8Fz9VJk-bjuCx-wYIXPYc0nS5duklNusj-e6MVxIsEJszL-8wMLyHXFG4pgLxLuYAsgeoSKl7R8nhCFlTkVmgmT8kCAGhZawnn5CKlXe4qyemCbFaFCzFiGoNv0TssGpw-EH2W92PWU98MWFjfFr3_I42D9VjgYNMU0mSn3qVLctbZIeHVz78kbw_3r-uncvPy-LxebUrHQE-lZQ2zkqqKibbrHK1pvph3urGKKcsFNkzp2tqatcAkMFEjY9xyJaQGpTlbkpt57hjD-wHTZHbhEH1eaao8SXDNOWTX7eza2gFN77swRevya3Hfu-Cx67O-qpWGqlZMZKCaARdDShE7M8Z-b-PRUDBfMZs5ZpNjNt8xm2OG2AylbPZbjL-3_EN9Ak5yf-Q</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>Honein, Tony</creator><creator>Honein, Elie</creator><creator>Najjar, Michel</creator><creator>Rai, Habib</creator><general>Springer Vienna</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7XB</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0001-8936-3788</orcidid></search><sort><creationdate>20190701</creationdate><title>A correspondence between compressible and incompressible plane elastostatics</title><author>Honein, Tony ; Honein, Elie ; Najjar, Michel ; Rai, Habib</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c309t-a3b3a718236dffc1514214f9ba838a46eb3895aa53d0370365e334a4867908943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Boundary value problems</topic><topic>Classical and Continuum Physics</topic><topic>Compressibility</topic><topic>Control</topic><topic>Displacement</topic><topic>Dynamical Systems</topic><topic>Elasticity</topic><topic>Elastostatics</topic><topic>Engineering</topic><topic>Engineering Thermodynamics</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Flying-machines</topic><topic>Heat and Mass Transfer</topic><topic>Incompressibility</topic><topic>Incompressible flow</topic><topic>Original Paper</topic><topic>Shear modulus</topic><topic>Solid Mechanics</topic><topic>Stokes flow</topic><topic>Stress functions</topic><topic>Theoretical and Applied Mechanics</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Honein, Tony</creatorcontrib><creatorcontrib>Honein, Elie</creatorcontrib><creatorcontrib>Najjar, Michel</creatorcontrib><creatorcontrib>Rai, Habib</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database (ProQuest)</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Acta mechanica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Honein, Tony</au><au>Honein, Elie</au><au>Najjar, Michel</au><au>Rai, Habib</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A correspondence between compressible and incompressible plane elastostatics</atitle><jtitle>Acta mechanica</jtitle><stitle>Acta Mech</stitle><date>2019-07-01</date><risdate>2019</risdate><volume>230</volume><issue>7</issue><spage>2549</spage><epage>2562</epage><pages>2549-2562</pages><issn>0001-5970</issn><eissn>1619-6937</eissn><abstract>It is shown that a heretofore seemingly unnoticed correspondence (or analogy) exists between the traction boundary value problem for compressible media and the displacement boundary value problem for incompressible media occupying the same domain, in plane, isotropic, linear elastostatics. The Airy stress function, which satisfies equilibrium identically, has to be biharmonic in order to satisfy the compatibility condition in a compressible body. Correspondingly, a displacement potential function, which satisfies the incompressibility condition identically, has to be biharmonic in order to satisfy equilibrium. Since Stokes flow is governed by identical relations as incompressible plane elasticity, if displacement is interpreted as velocity and the shear modulus as dynamic viscosity, the correspondence extends to that between compressible elasticity and Stokes flow for boundary value problems indicated above. This analogy provides a rare example of a constrained system which is equivalent to the same system without the constraint.</abstract><cop>Vienna</cop><pub>Springer Vienna</pub><doi>10.1007/s00707-019-02421-y</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-8936-3788</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0001-5970
ispartof Acta mechanica, 2019-07, Vol.230 (7), p.2549-2562
issn 0001-5970
1619-6937
language eng
recordid cdi_proquest_journals_2214649440
source SpringerLink Journals - AutoHoldings
subjects Boundary value problems
Classical and Continuum Physics
Compressibility
Control
Displacement
Dynamical Systems
Elasticity
Elastostatics
Engineering
Engineering Thermodynamics
Fluid dynamics
Fluid flow
Flying-machines
Heat and Mass Transfer
Incompressibility
Incompressible flow
Original Paper
Shear modulus
Solid Mechanics
Stokes flow
Stress functions
Theoretical and Applied Mechanics
Vibration
title A correspondence between compressible and incompressible plane elastostatics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T16%3A06%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20correspondence%20between%20compressible%20and%20incompressible%20plane%20elastostatics&rft.jtitle=Acta%20mechanica&rft.au=Honein,%20Tony&rft.date=2019-07-01&rft.volume=230&rft.issue=7&rft.spage=2549&rft.epage=2562&rft.pages=2549-2562&rft.issn=0001-5970&rft.eissn=1619-6937&rft_id=info:doi/10.1007/s00707-019-02421-y&rft_dat=%3Cgale_proqu%3EA589025836%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2214649440&rft_id=info:pmid/&rft_galeid=A589025836&rfr_iscdi=true