Data-Driven Modeling of Groundwater Level with Least-Square Support Vector Machine and Spatial–Temporal Analysis

Investigation of groundwater level is considered a prominent research topic for the study of underground hydrologic system. Due to the complexities of underground geological structure, the accuracy of real-time ground water level prediction is limited. In this study, a novel two-phase data-driven fr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geotechnical and geological engineering 2019-06, Vol.37 (3), p.1661-1670
Hauptverfasser: Tang, Yandong, Zang, Cuiping, Wei, Yong, Jiang, Minghui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1670
container_issue 3
container_start_page 1661
container_title Geotechnical and geological engineering
container_volume 37
creator Tang, Yandong
Zang, Cuiping
Wei, Yong
Jiang, Minghui
description Investigation of groundwater level is considered a prominent research topic for the study of underground hydrologic system. Due to the complexities of underground geological structure, the accuracy of real-time ground water level prediction is limited. In this study, a novel two-phase data-driven framework to model the time-series groundwater level with spatial–temporal analysis and least square support vector machine is proposed. Groundwater data collected from four monitoring sites in the northern region of United Kingdom is utilize in this study. In phase I, the time-series analysis is conducted to study the temporal characteristics of the groundwater. Based on the time-series analysis, least square support vector machine is performed to construct the prediction model to forecast the future groundwater level. In phase-II, the spatial correlation between the water levels in four sites are computed to construct a comprehensive model regarding the interrelation between the monitoring sites. Computational results illustrated the outperformance of least square support vector machine in predicting time-series groundwater levels compared with other state-of-arts machine learning algorithms. It has been demonstrated that the spatial–temporal model may serve as an applicable approach for the future research of groundwater resources.
doi_str_mv 10.1007/s10706-018-0713-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2214141824</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2214141824</sourcerecordid><originalsourceid>FETCH-LOGICAL-a339t-4b5aa38b1204e44e28cfefa2d9dda46b6cb42ffbeae317ab3aac3f18fc41b60e3</originalsourceid><addsrcrecordid>eNp1kM9OwkAQhzdGExF9AG-beF7df7TlSEDRBOIB9LqZtrNQUtqyu5Vw8x18Q5_EEkw8mTnMHL7fL5OPkFvB7wXn8YMXPOYR4yJhPBaKRWekJwaxYmIgh-ekx4cRZ0ok8pJceb_hnMuIix5xEwjAJq74wIrO6xzLolrR2tKpq9sq30NAR2f4gSXdF2HdneADW-xacEgXbdPULtB3zELt6ByydVEhhSqniwZCAeX359cStx0EJR1VUB584a_JhYXS483v7pO3p8fl-JnNXqcv49GMgVLDwHQ6AFBJKiTXqDXKJLNoQebDPAcdpVGWamltioBKxJAqgExZkdhMizTiqPrk7tTbuHrXog9mU7eue8IbKYXuJpG6o8SJylztvUNrGldswR2M4Oao1pzUmk6tOao1UZeRp4zv2GqF7q_5_9APEn9_KA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2214141824</pqid></control><display><type>article</type><title>Data-Driven Modeling of Groundwater Level with Least-Square Support Vector Machine and Spatial–Temporal Analysis</title><source>SpringerLink (Online service)</source><creator>Tang, Yandong ; Zang, Cuiping ; Wei, Yong ; Jiang, Minghui</creator><creatorcontrib>Tang, Yandong ; Zang, Cuiping ; Wei, Yong ; Jiang, Minghui</creatorcontrib><description>Investigation of groundwater level is considered a prominent research topic for the study of underground hydrologic system. Due to the complexities of underground geological structure, the accuracy of real-time ground water level prediction is limited. In this study, a novel two-phase data-driven framework to model the time-series groundwater level with spatial–temporal analysis and least square support vector machine is proposed. Groundwater data collected from four monitoring sites in the northern region of United Kingdom is utilize in this study. In phase I, the time-series analysis is conducted to study the temporal characteristics of the groundwater. Based on the time-series analysis, least square support vector machine is performed to construct the prediction model to forecast the future groundwater level. In phase-II, the spatial correlation between the water levels in four sites are computed to construct a comprehensive model regarding the interrelation between the monitoring sites. Computational results illustrated the outperformance of least square support vector machine in predicting time-series groundwater levels compared with other state-of-arts machine learning algorithms. It has been demonstrated that the spatial–temporal model may serve as an applicable approach for the future research of groundwater resources.</description><identifier>ISSN: 0960-3182</identifier><identifier>EISSN: 1573-1529</identifier><identifier>DOI: 10.1007/s10706-018-0713-6</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Algorithms ; Civil Engineering ; Computer applications ; Data ; Earth and Environmental Science ; Earth Sciences ; Frameworks ; Geological structures ; Geotechnical Engineering &amp; Applied Earth Sciences ; Groundwater ; Groundwater data ; Groundwater levels ; Hydrogeology ; Hydrologic data ; Hydrology ; Learning algorithms ; Least squares ; Machine learning ; Mathematical models ; Modelling ; Monitoring ; Original Paper ; Prediction models ; Spatial analysis ; Support vector machines ; Terrestrial Pollution ; Time series ; Underground structures ; Waste Management/Waste Technology ; Water levels ; Water resources</subject><ispartof>Geotechnical and geological engineering, 2019-06, Vol.37 (3), p.1661-1670</ispartof><rights>Springer Nature Switzerland AG 2018</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a339t-4b5aa38b1204e44e28cfefa2d9dda46b6cb42ffbeae317ab3aac3f18fc41b60e3</citedby><cites>FETCH-LOGICAL-a339t-4b5aa38b1204e44e28cfefa2d9dda46b6cb42ffbeae317ab3aac3f18fc41b60e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10706-018-0713-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10706-018-0713-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Tang, Yandong</creatorcontrib><creatorcontrib>Zang, Cuiping</creatorcontrib><creatorcontrib>Wei, Yong</creatorcontrib><creatorcontrib>Jiang, Minghui</creatorcontrib><title>Data-Driven Modeling of Groundwater Level with Least-Square Support Vector Machine and Spatial–Temporal Analysis</title><title>Geotechnical and geological engineering</title><addtitle>Geotech Geol Eng</addtitle><description>Investigation of groundwater level is considered a prominent research topic for the study of underground hydrologic system. Due to the complexities of underground geological structure, the accuracy of real-time ground water level prediction is limited. In this study, a novel two-phase data-driven framework to model the time-series groundwater level with spatial–temporal analysis and least square support vector machine is proposed. Groundwater data collected from four monitoring sites in the northern region of United Kingdom is utilize in this study. In phase I, the time-series analysis is conducted to study the temporal characteristics of the groundwater. Based on the time-series analysis, least square support vector machine is performed to construct the prediction model to forecast the future groundwater level. In phase-II, the spatial correlation between the water levels in four sites are computed to construct a comprehensive model regarding the interrelation between the monitoring sites. Computational results illustrated the outperformance of least square support vector machine in predicting time-series groundwater levels compared with other state-of-arts machine learning algorithms. It has been demonstrated that the spatial–temporal model may serve as an applicable approach for the future research of groundwater resources.</description><subject>Algorithms</subject><subject>Civil Engineering</subject><subject>Computer applications</subject><subject>Data</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Frameworks</subject><subject>Geological structures</subject><subject>Geotechnical Engineering &amp; Applied Earth Sciences</subject><subject>Groundwater</subject><subject>Groundwater data</subject><subject>Groundwater levels</subject><subject>Hydrogeology</subject><subject>Hydrologic data</subject><subject>Hydrology</subject><subject>Learning algorithms</subject><subject>Least squares</subject><subject>Machine learning</subject><subject>Mathematical models</subject><subject>Modelling</subject><subject>Monitoring</subject><subject>Original Paper</subject><subject>Prediction models</subject><subject>Spatial analysis</subject><subject>Support vector machines</subject><subject>Terrestrial Pollution</subject><subject>Time series</subject><subject>Underground structures</subject><subject>Waste Management/Waste Technology</subject><subject>Water levels</subject><subject>Water resources</subject><issn>0960-3182</issn><issn>1573-1529</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kM9OwkAQhzdGExF9AG-beF7df7TlSEDRBOIB9LqZtrNQUtqyu5Vw8x18Q5_EEkw8mTnMHL7fL5OPkFvB7wXn8YMXPOYR4yJhPBaKRWekJwaxYmIgh-ekx4cRZ0ok8pJceb_hnMuIix5xEwjAJq74wIrO6xzLolrR2tKpq9sq30NAR2f4gSXdF2HdneADW-xacEgXbdPULtB3zELt6ByydVEhhSqniwZCAeX359cStx0EJR1VUB584a_JhYXS483v7pO3p8fl-JnNXqcv49GMgVLDwHQ6AFBJKiTXqDXKJLNoQebDPAcdpVGWamltioBKxJAqgExZkdhMizTiqPrk7tTbuHrXog9mU7eue8IbKYXuJpG6o8SJylztvUNrGldswR2M4Oao1pzUmk6tOao1UZeRp4zv2GqF7q_5_9APEn9_KA</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>Tang, Yandong</creator><creator>Zang, Cuiping</creator><creator>Wei, Yong</creator><creator>Jiang, Minghui</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TN</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope></search><sort><creationdate>20190601</creationdate><title>Data-Driven Modeling of Groundwater Level with Least-Square Support Vector Machine and Spatial–Temporal Analysis</title><author>Tang, Yandong ; Zang, Cuiping ; Wei, Yong ; Jiang, Minghui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a339t-4b5aa38b1204e44e28cfefa2d9dda46b6cb42ffbeae317ab3aac3f18fc41b60e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Civil Engineering</topic><topic>Computer applications</topic><topic>Data</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Frameworks</topic><topic>Geological structures</topic><topic>Geotechnical Engineering &amp; Applied Earth Sciences</topic><topic>Groundwater</topic><topic>Groundwater data</topic><topic>Groundwater levels</topic><topic>Hydrogeology</topic><topic>Hydrologic data</topic><topic>Hydrology</topic><topic>Learning algorithms</topic><topic>Least squares</topic><topic>Machine learning</topic><topic>Mathematical models</topic><topic>Modelling</topic><topic>Monitoring</topic><topic>Original Paper</topic><topic>Prediction models</topic><topic>Spatial analysis</topic><topic>Support vector machines</topic><topic>Terrestrial Pollution</topic><topic>Time series</topic><topic>Underground structures</topic><topic>Waste Management/Waste Technology</topic><topic>Water levels</topic><topic>Water resources</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tang, Yandong</creatorcontrib><creatorcontrib>Zang, Cuiping</creatorcontrib><creatorcontrib>Wei, Yong</creatorcontrib><creatorcontrib>Jiang, Minghui</creatorcontrib><collection>CrossRef</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Geotechnical and geological engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tang, Yandong</au><au>Zang, Cuiping</au><au>Wei, Yong</au><au>Jiang, Minghui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Data-Driven Modeling of Groundwater Level with Least-Square Support Vector Machine and Spatial–Temporal Analysis</atitle><jtitle>Geotechnical and geological engineering</jtitle><stitle>Geotech Geol Eng</stitle><date>2019-06-01</date><risdate>2019</risdate><volume>37</volume><issue>3</issue><spage>1661</spage><epage>1670</epage><pages>1661-1670</pages><issn>0960-3182</issn><eissn>1573-1529</eissn><abstract>Investigation of groundwater level is considered a prominent research topic for the study of underground hydrologic system. Due to the complexities of underground geological structure, the accuracy of real-time ground water level prediction is limited. In this study, a novel two-phase data-driven framework to model the time-series groundwater level with spatial–temporal analysis and least square support vector machine is proposed. Groundwater data collected from four monitoring sites in the northern region of United Kingdom is utilize in this study. In phase I, the time-series analysis is conducted to study the temporal characteristics of the groundwater. Based on the time-series analysis, least square support vector machine is performed to construct the prediction model to forecast the future groundwater level. In phase-II, the spatial correlation between the water levels in four sites are computed to construct a comprehensive model regarding the interrelation between the monitoring sites. Computational results illustrated the outperformance of least square support vector machine in predicting time-series groundwater levels compared with other state-of-arts machine learning algorithms. It has been demonstrated that the spatial–temporal model may serve as an applicable approach for the future research of groundwater resources.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10706-018-0713-6</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0960-3182
ispartof Geotechnical and geological engineering, 2019-06, Vol.37 (3), p.1661-1670
issn 0960-3182
1573-1529
language eng
recordid cdi_proquest_journals_2214141824
source SpringerLink (Online service)
subjects Algorithms
Civil Engineering
Computer applications
Data
Earth and Environmental Science
Earth Sciences
Frameworks
Geological structures
Geotechnical Engineering & Applied Earth Sciences
Groundwater
Groundwater data
Groundwater levels
Hydrogeology
Hydrologic data
Hydrology
Learning algorithms
Least squares
Machine learning
Mathematical models
Modelling
Monitoring
Original Paper
Prediction models
Spatial analysis
Support vector machines
Terrestrial Pollution
Time series
Underground structures
Waste Management/Waste Technology
Water levels
Water resources
title Data-Driven Modeling of Groundwater Level with Least-Square Support Vector Machine and Spatial–Temporal Analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T06%3A57%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Data-Driven%20Modeling%20of%20Groundwater%20Level%20with%20Least-Square%20Support%20Vector%20Machine%20and%20Spatial%E2%80%93Temporal%20Analysis&rft.jtitle=Geotechnical%20and%20geological%20engineering&rft.au=Tang,%20Yandong&rft.date=2019-06-01&rft.volume=37&rft.issue=3&rft.spage=1661&rft.epage=1670&rft.pages=1661-1670&rft.issn=0960-3182&rft.eissn=1573-1529&rft_id=info:doi/10.1007/s10706-018-0713-6&rft_dat=%3Cproquest_cross%3E2214141824%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2214141824&rft_id=info:pmid/&rfr_iscdi=true