Numerical Study of the Mixing Inside a Jet Stirred Reactor using Large Eddy Simulations
Jet Stirred Reactors (JSR) have been extensively used in the last decades to investigate gas phase chemical kinetics. Inside the JSR efficient mixing through turbulent jets is required in order to obtain homogeneous compositions. One of the best ways to achieve the mixing of the gas phase is to use...
Gespeichert in:
Veröffentlicht in: | Flow, turbulence and combustion turbulence and combustion, 2019-02, Vol.102 (2), p.331-343 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 343 |
---|---|
container_issue | 2 |
container_start_page | 331 |
container_title | Flow, turbulence and combustion |
container_volume | 102 |
creator | Esmaeelzade, Ghazaleh Moshammer, Kai Fernandes, Ravi Markus, Detlev Grosshans, Holger |
description | Jet Stirred Reactors (JSR) have been extensively used in the last decades to investigate gas phase chemical kinetics. Inside the JSR efficient mixing through turbulent jets is required in order to obtain homogeneous compositions. One of the best ways to achieve the mixing of the gas phase is to use turbulent jets obtained from nozzles. In our research, Computational Fluid Dynamics (CFD) simulations were applied to predict the mixing and flow field characteristics inside a spherical reactor. Large-Eddy Simulations (LES) were used to compute the residence time distribution and the mixing inside the JSR for different flow rates. Our simulations concern a non-reacting mixture at ambient conditions. The results agree well with tracer-decay data, experimentally measured using laser absorption spectroscopy, and with a CFD analysis of the mixing rate based on the Reynolds-Averaged Navier-Stokes (RANS) approach. Our simulations enable us to provide detailed information concerning the instantaneous turbulent structures which effectuate mixing inside the JSR. |
doi_str_mv | 10.1007/s10494-018-9961-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2214134595</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2214134595</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-bb173a20f2089e2d64f3ba2993a8599d6c682dcaa345fa3968672d3ee95621493</originalsourceid><addsrcrecordid>eNp1kE1LAzEQQIMoWKs_wFvAczQfu9nMUUrVyqpgFY8h3WRrSrtbk12w_fWmrODJ08zhvRl4CF0yes0oLW4ioxlkhDJFACQj-yM0YnkhCANVHKddKEkkU9kpOotxRSmVBYUR-njuNy74yqzxvOvtDrc17j4dfvLfvlniWRO9ddjgR9clwIfgLH51puragPt4QEoTlg5PbXLnftOvTefbJp6jk9qso7v4nWP0fjd9mzyQ8uV-NrktSSVy0ZHFghXCcFpzqsBxK7NaLAwHEEblAFZWUnFbGSOyvDYCpJIFt8I5yCVnGYgxuhrubkP71bvY6VXbhya91DwBLHmQJ4oNVBXaGIOr9Tb4jQk7zag-9NNDP5366UM_vU8OH5yY2Gbpwt_l_6UfyVxyfA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2214134595</pqid></control><display><type>article</type><title>Numerical Study of the Mixing Inside a Jet Stirred Reactor using Large Eddy Simulations</title><source>Springer Nature - Complete Springer Journals</source><creator>Esmaeelzade, Ghazaleh ; Moshammer, Kai ; Fernandes, Ravi ; Markus, Detlev ; Grosshans, Holger</creator><creatorcontrib>Esmaeelzade, Ghazaleh ; Moshammer, Kai ; Fernandes, Ravi ; Markus, Detlev ; Grosshans, Holger</creatorcontrib><description>Jet Stirred Reactors (JSR) have been extensively used in the last decades to investigate gas phase chemical kinetics. Inside the JSR efficient mixing through turbulent jets is required in order to obtain homogeneous compositions. One of the best ways to achieve the mixing of the gas phase is to use turbulent jets obtained from nozzles. In our research, Computational Fluid Dynamics (CFD) simulations were applied to predict the mixing and flow field characteristics inside a spherical reactor. Large-Eddy Simulations (LES) were used to compute the residence time distribution and the mixing inside the JSR for different flow rates. Our simulations concern a non-reacting mixture at ambient conditions. The results agree well with tracer-decay data, experimentally measured using laser absorption spectroscopy, and with a CFD analysis of the mixing rate based on the Reynolds-Averaged Navier-Stokes (RANS) approach. Our simulations enable us to provide detailed information concerning the instantaneous turbulent structures which effectuate mixing inside the JSR.</description><identifier>ISSN: 1386-6184</identifier><identifier>EISSN: 1573-1987</identifier><identifier>DOI: 10.1007/s10494-018-9961-z</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Automotive Engineering ; Computational fluid dynamics ; Computer simulation ; Engineering ; Engineering Fluid Dynamics ; Engineering Thermodynamics ; Flow velocity ; Fluid flow ; Fluid- and Aerodynamics ; Heat and Mass Transfer ; Large eddy simulation ; Nozzles ; Organic chemistry ; Reaction kinetics ; Residence time distribution ; Reynolds averaged Navier-Stokes method ; Simulation ; Turbulent jets ; Vapor phases ; Vortices</subject><ispartof>Flow, turbulence and combustion, 2019-02, Vol.102 (2), p.331-343</ispartof><rights>Springer Nature B.V. 2018</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-bb173a20f2089e2d64f3ba2993a8599d6c682dcaa345fa3968672d3ee95621493</citedby><cites>FETCH-LOGICAL-c353t-bb173a20f2089e2d64f3ba2993a8599d6c682dcaa345fa3968672d3ee95621493</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10494-018-9961-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10494-018-9961-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Esmaeelzade, Ghazaleh</creatorcontrib><creatorcontrib>Moshammer, Kai</creatorcontrib><creatorcontrib>Fernandes, Ravi</creatorcontrib><creatorcontrib>Markus, Detlev</creatorcontrib><creatorcontrib>Grosshans, Holger</creatorcontrib><title>Numerical Study of the Mixing Inside a Jet Stirred Reactor using Large Eddy Simulations</title><title>Flow, turbulence and combustion</title><addtitle>Flow Turbulence Combust</addtitle><description>Jet Stirred Reactors (JSR) have been extensively used in the last decades to investigate gas phase chemical kinetics. Inside the JSR efficient mixing through turbulent jets is required in order to obtain homogeneous compositions. One of the best ways to achieve the mixing of the gas phase is to use turbulent jets obtained from nozzles. In our research, Computational Fluid Dynamics (CFD) simulations were applied to predict the mixing and flow field characteristics inside a spherical reactor. Large-Eddy Simulations (LES) were used to compute the residence time distribution and the mixing inside the JSR for different flow rates. Our simulations concern a non-reacting mixture at ambient conditions. The results agree well with tracer-decay data, experimentally measured using laser absorption spectroscopy, and with a CFD analysis of the mixing rate based on the Reynolds-Averaged Navier-Stokes (RANS) approach. Our simulations enable us to provide detailed information concerning the instantaneous turbulent structures which effectuate mixing inside the JSR.</description><subject>Automotive Engineering</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Engineering</subject><subject>Engineering Fluid Dynamics</subject><subject>Engineering Thermodynamics</subject><subject>Flow velocity</subject><subject>Fluid flow</subject><subject>Fluid- and Aerodynamics</subject><subject>Heat and Mass Transfer</subject><subject>Large eddy simulation</subject><subject>Nozzles</subject><subject>Organic chemistry</subject><subject>Reaction kinetics</subject><subject>Residence time distribution</subject><subject>Reynolds averaged Navier-Stokes method</subject><subject>Simulation</subject><subject>Turbulent jets</subject><subject>Vapor phases</subject><subject>Vortices</subject><issn>1386-6184</issn><issn>1573-1987</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQQIMoWKs_wFvAczQfu9nMUUrVyqpgFY8h3WRrSrtbk12w_fWmrODJ08zhvRl4CF0yes0oLW4ioxlkhDJFACQj-yM0YnkhCANVHKddKEkkU9kpOotxRSmVBYUR-njuNy74yqzxvOvtDrc17j4dfvLfvlniWRO9ddjgR9clwIfgLH51puragPt4QEoTlg5PbXLnftOvTefbJp6jk9qso7v4nWP0fjd9mzyQ8uV-NrktSSVy0ZHFghXCcFpzqsBxK7NaLAwHEEblAFZWUnFbGSOyvDYCpJIFt8I5yCVnGYgxuhrubkP71bvY6VXbhya91DwBLHmQJ4oNVBXaGIOr9Tb4jQk7zag-9NNDP5366UM_vU8OH5yY2Gbpwt_l_6UfyVxyfA</recordid><startdate>20190215</startdate><enddate>20190215</enddate><creator>Esmaeelzade, Ghazaleh</creator><creator>Moshammer, Kai</creator><creator>Fernandes, Ravi</creator><creator>Markus, Detlev</creator><creator>Grosshans, Holger</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20190215</creationdate><title>Numerical Study of the Mixing Inside a Jet Stirred Reactor using Large Eddy Simulations</title><author>Esmaeelzade, Ghazaleh ; Moshammer, Kai ; Fernandes, Ravi ; Markus, Detlev ; Grosshans, Holger</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-bb173a20f2089e2d64f3ba2993a8599d6c682dcaa345fa3968672d3ee95621493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Automotive Engineering</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Engineering</topic><topic>Engineering Fluid Dynamics</topic><topic>Engineering Thermodynamics</topic><topic>Flow velocity</topic><topic>Fluid flow</topic><topic>Fluid- and Aerodynamics</topic><topic>Heat and Mass Transfer</topic><topic>Large eddy simulation</topic><topic>Nozzles</topic><topic>Organic chemistry</topic><topic>Reaction kinetics</topic><topic>Residence time distribution</topic><topic>Reynolds averaged Navier-Stokes method</topic><topic>Simulation</topic><topic>Turbulent jets</topic><topic>Vapor phases</topic><topic>Vortices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Esmaeelzade, Ghazaleh</creatorcontrib><creatorcontrib>Moshammer, Kai</creatorcontrib><creatorcontrib>Fernandes, Ravi</creatorcontrib><creatorcontrib>Markus, Detlev</creatorcontrib><creatorcontrib>Grosshans, Holger</creatorcontrib><collection>CrossRef</collection><jtitle>Flow, turbulence and combustion</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Esmaeelzade, Ghazaleh</au><au>Moshammer, Kai</au><au>Fernandes, Ravi</au><au>Markus, Detlev</au><au>Grosshans, Holger</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical Study of the Mixing Inside a Jet Stirred Reactor using Large Eddy Simulations</atitle><jtitle>Flow, turbulence and combustion</jtitle><stitle>Flow Turbulence Combust</stitle><date>2019-02-15</date><risdate>2019</risdate><volume>102</volume><issue>2</issue><spage>331</spage><epage>343</epage><pages>331-343</pages><issn>1386-6184</issn><eissn>1573-1987</eissn><abstract>Jet Stirred Reactors (JSR) have been extensively used in the last decades to investigate gas phase chemical kinetics. Inside the JSR efficient mixing through turbulent jets is required in order to obtain homogeneous compositions. One of the best ways to achieve the mixing of the gas phase is to use turbulent jets obtained from nozzles. In our research, Computational Fluid Dynamics (CFD) simulations were applied to predict the mixing and flow field characteristics inside a spherical reactor. Large-Eddy Simulations (LES) were used to compute the residence time distribution and the mixing inside the JSR for different flow rates. Our simulations concern a non-reacting mixture at ambient conditions. The results agree well with tracer-decay data, experimentally measured using laser absorption spectroscopy, and with a CFD analysis of the mixing rate based on the Reynolds-Averaged Navier-Stokes (RANS) approach. Our simulations enable us to provide detailed information concerning the instantaneous turbulent structures which effectuate mixing inside the JSR.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10494-018-9961-z</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1386-6184 |
ispartof | Flow, turbulence and combustion, 2019-02, Vol.102 (2), p.331-343 |
issn | 1386-6184 1573-1987 |
language | eng |
recordid | cdi_proquest_journals_2214134595 |
source | Springer Nature - Complete Springer Journals |
subjects | Automotive Engineering Computational fluid dynamics Computer simulation Engineering Engineering Fluid Dynamics Engineering Thermodynamics Flow velocity Fluid flow Fluid- and Aerodynamics Heat and Mass Transfer Large eddy simulation Nozzles Organic chemistry Reaction kinetics Residence time distribution Reynolds averaged Navier-Stokes method Simulation Turbulent jets Vapor phases Vortices |
title | Numerical Study of the Mixing Inside a Jet Stirred Reactor using Large Eddy Simulations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T01%3A43%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20Study%20of%20the%20Mixing%20Inside%20a%20Jet%20Stirred%20Reactor%20using%20Large%20Eddy%20Simulations&rft.jtitle=Flow,%20turbulence%20and%20combustion&rft.au=Esmaeelzade,%20Ghazaleh&rft.date=2019-02-15&rft.volume=102&rft.issue=2&rft.spage=331&rft.epage=343&rft.pages=331-343&rft.issn=1386-6184&rft.eissn=1573-1987&rft_id=info:doi/10.1007/s10494-018-9961-z&rft_dat=%3Cproquest_cross%3E2214134595%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2214134595&rft_id=info:pmid/&rfr_iscdi=true |