Numerical Study of the Mixing Inside a Jet Stirred Reactor using Large Eddy Simulations

Jet Stirred Reactors (JSR) have been extensively used in the last decades to investigate gas phase chemical kinetics. Inside the JSR efficient mixing through turbulent jets is required in order to obtain homogeneous compositions. One of the best ways to achieve the mixing of the gas phase is to use...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Flow, turbulence and combustion turbulence and combustion, 2019-02, Vol.102 (2), p.331-343
Hauptverfasser: Esmaeelzade, Ghazaleh, Moshammer, Kai, Fernandes, Ravi, Markus, Detlev, Grosshans, Holger
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 343
container_issue 2
container_start_page 331
container_title Flow, turbulence and combustion
container_volume 102
creator Esmaeelzade, Ghazaleh
Moshammer, Kai
Fernandes, Ravi
Markus, Detlev
Grosshans, Holger
description Jet Stirred Reactors (JSR) have been extensively used in the last decades to investigate gas phase chemical kinetics. Inside the JSR efficient mixing through turbulent jets is required in order to obtain homogeneous compositions. One of the best ways to achieve the mixing of the gas phase is to use turbulent jets obtained from nozzles. In our research, Computational Fluid Dynamics (CFD) simulations were applied to predict the mixing and flow field characteristics inside a spherical reactor. Large-Eddy Simulations (LES) were used to compute the residence time distribution and the mixing inside the JSR for different flow rates. Our simulations concern a non-reacting mixture at ambient conditions. The results agree well with tracer-decay data, experimentally measured using laser absorption spectroscopy, and with a CFD analysis of the mixing rate based on the Reynolds-Averaged Navier-Stokes (RANS) approach. Our simulations enable us to provide detailed information concerning the instantaneous turbulent structures which effectuate mixing inside the JSR.
doi_str_mv 10.1007/s10494-018-9961-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2214134595</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2214134595</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-bb173a20f2089e2d64f3ba2993a8599d6c682dcaa345fa3968672d3ee95621493</originalsourceid><addsrcrecordid>eNp1kE1LAzEQQIMoWKs_wFvAczQfu9nMUUrVyqpgFY8h3WRrSrtbk12w_fWmrODJ08zhvRl4CF0yes0oLW4ioxlkhDJFACQj-yM0YnkhCANVHKddKEkkU9kpOotxRSmVBYUR-njuNy74yqzxvOvtDrc17j4dfvLfvlniWRO9ddjgR9clwIfgLH51puragPt4QEoTlg5PbXLnftOvTefbJp6jk9qso7v4nWP0fjd9mzyQ8uV-NrktSSVy0ZHFghXCcFpzqsBxK7NaLAwHEEblAFZWUnFbGSOyvDYCpJIFt8I5yCVnGYgxuhrubkP71bvY6VXbhya91DwBLHmQJ4oNVBXaGIOr9Tb4jQk7zag-9NNDP5366UM_vU8OH5yY2Gbpwt_l_6UfyVxyfA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2214134595</pqid></control><display><type>article</type><title>Numerical Study of the Mixing Inside a Jet Stirred Reactor using Large Eddy Simulations</title><source>Springer Nature - Complete Springer Journals</source><creator>Esmaeelzade, Ghazaleh ; Moshammer, Kai ; Fernandes, Ravi ; Markus, Detlev ; Grosshans, Holger</creator><creatorcontrib>Esmaeelzade, Ghazaleh ; Moshammer, Kai ; Fernandes, Ravi ; Markus, Detlev ; Grosshans, Holger</creatorcontrib><description>Jet Stirred Reactors (JSR) have been extensively used in the last decades to investigate gas phase chemical kinetics. Inside the JSR efficient mixing through turbulent jets is required in order to obtain homogeneous compositions. One of the best ways to achieve the mixing of the gas phase is to use turbulent jets obtained from nozzles. In our research, Computational Fluid Dynamics (CFD) simulations were applied to predict the mixing and flow field characteristics inside a spherical reactor. Large-Eddy Simulations (LES) were used to compute the residence time distribution and the mixing inside the JSR for different flow rates. Our simulations concern a non-reacting mixture at ambient conditions. The results agree well with tracer-decay data, experimentally measured using laser absorption spectroscopy, and with a CFD analysis of the mixing rate based on the Reynolds-Averaged Navier-Stokes (RANS) approach. Our simulations enable us to provide detailed information concerning the instantaneous turbulent structures which effectuate mixing inside the JSR.</description><identifier>ISSN: 1386-6184</identifier><identifier>EISSN: 1573-1987</identifier><identifier>DOI: 10.1007/s10494-018-9961-z</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Automotive Engineering ; Computational fluid dynamics ; Computer simulation ; Engineering ; Engineering Fluid Dynamics ; Engineering Thermodynamics ; Flow velocity ; Fluid flow ; Fluid- and Aerodynamics ; Heat and Mass Transfer ; Large eddy simulation ; Nozzles ; Organic chemistry ; Reaction kinetics ; Residence time distribution ; Reynolds averaged Navier-Stokes method ; Simulation ; Turbulent jets ; Vapor phases ; Vortices</subject><ispartof>Flow, turbulence and combustion, 2019-02, Vol.102 (2), p.331-343</ispartof><rights>Springer Nature B.V. 2018</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-bb173a20f2089e2d64f3ba2993a8599d6c682dcaa345fa3968672d3ee95621493</citedby><cites>FETCH-LOGICAL-c353t-bb173a20f2089e2d64f3ba2993a8599d6c682dcaa345fa3968672d3ee95621493</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10494-018-9961-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10494-018-9961-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Esmaeelzade, Ghazaleh</creatorcontrib><creatorcontrib>Moshammer, Kai</creatorcontrib><creatorcontrib>Fernandes, Ravi</creatorcontrib><creatorcontrib>Markus, Detlev</creatorcontrib><creatorcontrib>Grosshans, Holger</creatorcontrib><title>Numerical Study of the Mixing Inside a Jet Stirred Reactor using Large Eddy Simulations</title><title>Flow, turbulence and combustion</title><addtitle>Flow Turbulence Combust</addtitle><description>Jet Stirred Reactors (JSR) have been extensively used in the last decades to investigate gas phase chemical kinetics. Inside the JSR efficient mixing through turbulent jets is required in order to obtain homogeneous compositions. One of the best ways to achieve the mixing of the gas phase is to use turbulent jets obtained from nozzles. In our research, Computational Fluid Dynamics (CFD) simulations were applied to predict the mixing and flow field characteristics inside a spherical reactor. Large-Eddy Simulations (LES) were used to compute the residence time distribution and the mixing inside the JSR for different flow rates. Our simulations concern a non-reacting mixture at ambient conditions. The results agree well with tracer-decay data, experimentally measured using laser absorption spectroscopy, and with a CFD analysis of the mixing rate based on the Reynolds-Averaged Navier-Stokes (RANS) approach. Our simulations enable us to provide detailed information concerning the instantaneous turbulent structures which effectuate mixing inside the JSR.</description><subject>Automotive Engineering</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Engineering</subject><subject>Engineering Fluid Dynamics</subject><subject>Engineering Thermodynamics</subject><subject>Flow velocity</subject><subject>Fluid flow</subject><subject>Fluid- and Aerodynamics</subject><subject>Heat and Mass Transfer</subject><subject>Large eddy simulation</subject><subject>Nozzles</subject><subject>Organic chemistry</subject><subject>Reaction kinetics</subject><subject>Residence time distribution</subject><subject>Reynolds averaged Navier-Stokes method</subject><subject>Simulation</subject><subject>Turbulent jets</subject><subject>Vapor phases</subject><subject>Vortices</subject><issn>1386-6184</issn><issn>1573-1987</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQQIMoWKs_wFvAczQfu9nMUUrVyqpgFY8h3WRrSrtbk12w_fWmrODJ08zhvRl4CF0yes0oLW4ioxlkhDJFACQj-yM0YnkhCANVHKddKEkkU9kpOotxRSmVBYUR-njuNy74yqzxvOvtDrc17j4dfvLfvlniWRO9ddjgR9clwIfgLH51puragPt4QEoTlg5PbXLnftOvTefbJp6jk9qso7v4nWP0fjd9mzyQ8uV-NrktSSVy0ZHFghXCcFpzqsBxK7NaLAwHEEblAFZWUnFbGSOyvDYCpJIFt8I5yCVnGYgxuhrubkP71bvY6VXbhya91DwBLHmQJ4oNVBXaGIOr9Tb4jQk7zag-9NNDP5366UM_vU8OH5yY2Gbpwt_l_6UfyVxyfA</recordid><startdate>20190215</startdate><enddate>20190215</enddate><creator>Esmaeelzade, Ghazaleh</creator><creator>Moshammer, Kai</creator><creator>Fernandes, Ravi</creator><creator>Markus, Detlev</creator><creator>Grosshans, Holger</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20190215</creationdate><title>Numerical Study of the Mixing Inside a Jet Stirred Reactor using Large Eddy Simulations</title><author>Esmaeelzade, Ghazaleh ; Moshammer, Kai ; Fernandes, Ravi ; Markus, Detlev ; Grosshans, Holger</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-bb173a20f2089e2d64f3ba2993a8599d6c682dcaa345fa3968672d3ee95621493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Automotive Engineering</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Engineering</topic><topic>Engineering Fluid Dynamics</topic><topic>Engineering Thermodynamics</topic><topic>Flow velocity</topic><topic>Fluid flow</topic><topic>Fluid- and Aerodynamics</topic><topic>Heat and Mass Transfer</topic><topic>Large eddy simulation</topic><topic>Nozzles</topic><topic>Organic chemistry</topic><topic>Reaction kinetics</topic><topic>Residence time distribution</topic><topic>Reynolds averaged Navier-Stokes method</topic><topic>Simulation</topic><topic>Turbulent jets</topic><topic>Vapor phases</topic><topic>Vortices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Esmaeelzade, Ghazaleh</creatorcontrib><creatorcontrib>Moshammer, Kai</creatorcontrib><creatorcontrib>Fernandes, Ravi</creatorcontrib><creatorcontrib>Markus, Detlev</creatorcontrib><creatorcontrib>Grosshans, Holger</creatorcontrib><collection>CrossRef</collection><jtitle>Flow, turbulence and combustion</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Esmaeelzade, Ghazaleh</au><au>Moshammer, Kai</au><au>Fernandes, Ravi</au><au>Markus, Detlev</au><au>Grosshans, Holger</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical Study of the Mixing Inside a Jet Stirred Reactor using Large Eddy Simulations</atitle><jtitle>Flow, turbulence and combustion</jtitle><stitle>Flow Turbulence Combust</stitle><date>2019-02-15</date><risdate>2019</risdate><volume>102</volume><issue>2</issue><spage>331</spage><epage>343</epage><pages>331-343</pages><issn>1386-6184</issn><eissn>1573-1987</eissn><abstract>Jet Stirred Reactors (JSR) have been extensively used in the last decades to investigate gas phase chemical kinetics. Inside the JSR efficient mixing through turbulent jets is required in order to obtain homogeneous compositions. One of the best ways to achieve the mixing of the gas phase is to use turbulent jets obtained from nozzles. In our research, Computational Fluid Dynamics (CFD) simulations were applied to predict the mixing and flow field characteristics inside a spherical reactor. Large-Eddy Simulations (LES) were used to compute the residence time distribution and the mixing inside the JSR for different flow rates. Our simulations concern a non-reacting mixture at ambient conditions. The results agree well with tracer-decay data, experimentally measured using laser absorption spectroscopy, and with a CFD analysis of the mixing rate based on the Reynolds-Averaged Navier-Stokes (RANS) approach. Our simulations enable us to provide detailed information concerning the instantaneous turbulent structures which effectuate mixing inside the JSR.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10494-018-9961-z</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1386-6184
ispartof Flow, turbulence and combustion, 2019-02, Vol.102 (2), p.331-343
issn 1386-6184
1573-1987
language eng
recordid cdi_proquest_journals_2214134595
source Springer Nature - Complete Springer Journals
subjects Automotive Engineering
Computational fluid dynamics
Computer simulation
Engineering
Engineering Fluid Dynamics
Engineering Thermodynamics
Flow velocity
Fluid flow
Fluid- and Aerodynamics
Heat and Mass Transfer
Large eddy simulation
Nozzles
Organic chemistry
Reaction kinetics
Residence time distribution
Reynolds averaged Navier-Stokes method
Simulation
Turbulent jets
Vapor phases
Vortices
title Numerical Study of the Mixing Inside a Jet Stirred Reactor using Large Eddy Simulations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T01%3A43%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20Study%20of%20the%20Mixing%20Inside%20a%20Jet%20Stirred%20Reactor%20using%20Large%20Eddy%20Simulations&rft.jtitle=Flow,%20turbulence%20and%20combustion&rft.au=Esmaeelzade,%20Ghazaleh&rft.date=2019-02-15&rft.volume=102&rft.issue=2&rft.spage=331&rft.epage=343&rft.pages=331-343&rft.issn=1386-6184&rft.eissn=1573-1987&rft_id=info:doi/10.1007/s10494-018-9961-z&rft_dat=%3Cproquest_cross%3E2214134595%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2214134595&rft_id=info:pmid/&rfr_iscdi=true