Optimization with Demand Oracles

We study maximization subject to a budget constraint , where we are given a valuation function v , budget B and a cost c i for each item i . The goal is to find a set S that maximizes v ( S ) subject to Σ i ∈ S c i ≤ B . Special cases of this problem are well-studied problems from submodular optimiz...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Algorithmica 2019-06, Vol.81 (6), p.2244-2269
Hauptverfasser: Badanidiyuru, Ashwinkumar, Dobzinski, Shahar, Oren, Sigal
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2269
container_issue 6
container_start_page 2244
container_title Algorithmica
container_volume 81
creator Badanidiyuru, Ashwinkumar
Dobzinski, Shahar
Oren, Sigal
description We study maximization subject to a budget constraint , where we are given a valuation function v , budget B and a cost c i for each item i . The goal is to find a set S that maximizes v ( S ) subject to Σ i ∈ S c i ≤ B . Special cases of this problem are well-studied problems from submodular optimization. In particular, when the costs are all equal ( cardinality constraint ), a classic result by Nemhauser et al. shows that the greedy algorithm provides an e e - 1 approximation. Motivated by a large body of literature that utilizes demand queries to elicit the preferences of agents in economic settings, we develop algorithms that guarantee improved approximation ratios in the presence of demand oracles. We are able to break the e e - 1 barrier: we present algorithms that use only polynomially many demand queries and have approximation ratios of 9 8 + ϵ for the general problem and 9 8 for maximization subject to a cardinality constraint. We also consider the more general class of subadditive valuations. Here, if the valuations can only be accessed by value queries, only trivial approximation ratios can be guaranteed. In contrast, we present algorithms that use demand queries and obtain an approximation ratio of 2 + ϵ for the general problem and 2 for maximization subject to a cardinality constraint. We guarantee these approximation ratios even when the valuations are non-monotone. We show that these ratios are essentially optimal, in the sense that for any constant ϵ > 0 , obtaining an approximation ratio of 2 - ϵ requires exponentially many demand queries.
doi_str_mv 10.1007/s00453-018-00532-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2214131790</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2214131790</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-dfebeb47c6473d233511d0b14757c44179b6248531e8e8aca542a65ed03b219c3</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwA6wisTbM2OM4WaLylCp1A2vLcVxI1TywU1H4egxBYsdq7uKeO9Jh7BzhEgH0VQQgJTlgwQGUFHx_wGZIKYAiPGQzQF1wylEfs5MYNwAodJnPWLYaxqZtPu3Y9F323oyv2Y1vbVdnq2Dd1sdTdrS22-jPfu-cPd_dPi0e-HJ1_7i4XnInsRx5vfaVr0i7nLSshZQKsYYKSSvtiFCXVS6oUBJ94QvrrCJhc-VrkJXA0sk5u5h2h9C_7XwczabfhS69NEIgoUwTkFpiarnQxxj82gyhaW34MAjm24SZTJhkwvyYMPsEyQmKqdy9-PA3_Q_1BVy9Xyc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2214131790</pqid></control><display><type>article</type><title>Optimization with Demand Oracles</title><source>SpringerLink Journals - AutoHoldings</source><creator>Badanidiyuru, Ashwinkumar ; Dobzinski, Shahar ; Oren, Sigal</creator><creatorcontrib>Badanidiyuru, Ashwinkumar ; Dobzinski, Shahar ; Oren, Sigal</creatorcontrib><description>We study maximization subject to a budget constraint , where we are given a valuation function v , budget B and a cost c i for each item i . The goal is to find a set S that maximizes v ( S ) subject to Σ i ∈ S c i ≤ B . Special cases of this problem are well-studied problems from submodular optimization. In particular, when the costs are all equal ( cardinality constraint ), a classic result by Nemhauser et al. shows that the greedy algorithm provides an e e - 1 approximation. Motivated by a large body of literature that utilizes demand queries to elicit the preferences of agents in economic settings, we develop algorithms that guarantee improved approximation ratios in the presence of demand oracles. We are able to break the e e - 1 barrier: we present algorithms that use only polynomially many demand queries and have approximation ratios of 9 8 + ϵ for the general problem and 9 8 for maximization subject to a cardinality constraint. We also consider the more general class of subadditive valuations. Here, if the valuations can only be accessed by value queries, only trivial approximation ratios can be guaranteed. In contrast, we present algorithms that use demand queries and obtain an approximation ratio of 2 + ϵ for the general problem and 2 for maximization subject to a cardinality constraint. We guarantee these approximation ratios even when the valuations are non-monotone. We show that these ratios are essentially optimal, in the sense that for any constant ϵ &gt; 0 , obtaining an approximation ratio of 2 - ϵ requires exponentially many demand queries.</description><identifier>ISSN: 0178-4617</identifier><identifier>EISSN: 1432-0541</identifier><identifier>DOI: 10.1007/s00453-018-00532-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithm Analysis and Problem Complexity ; Algorithms ; Approximation ; Computer Science ; Computer Systems Organization and Communication Networks ; Data Structures and Information Theory ; Greedy algorithms ; Mathematical analysis ; Mathematics of Computing ; Maximization ; Optimization ; Queries ; Ratios ; Theory of Computation</subject><ispartof>Algorithmica, 2019-06, Vol.81 (6), p.2244-2269</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-dfebeb47c6473d233511d0b14757c44179b6248531e8e8aca542a65ed03b219c3</citedby><cites>FETCH-LOGICAL-c319t-dfebeb47c6473d233511d0b14757c44179b6248531e8e8aca542a65ed03b219c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00453-018-00532-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00453-018-00532-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Badanidiyuru, Ashwinkumar</creatorcontrib><creatorcontrib>Dobzinski, Shahar</creatorcontrib><creatorcontrib>Oren, Sigal</creatorcontrib><title>Optimization with Demand Oracles</title><title>Algorithmica</title><addtitle>Algorithmica</addtitle><description>We study maximization subject to a budget constraint , where we are given a valuation function v , budget B and a cost c i for each item i . The goal is to find a set S that maximizes v ( S ) subject to Σ i ∈ S c i ≤ B . Special cases of this problem are well-studied problems from submodular optimization. In particular, when the costs are all equal ( cardinality constraint ), a classic result by Nemhauser et al. shows that the greedy algorithm provides an e e - 1 approximation. Motivated by a large body of literature that utilizes demand queries to elicit the preferences of agents in economic settings, we develop algorithms that guarantee improved approximation ratios in the presence of demand oracles. We are able to break the e e - 1 barrier: we present algorithms that use only polynomially many demand queries and have approximation ratios of 9 8 + ϵ for the general problem and 9 8 for maximization subject to a cardinality constraint. We also consider the more general class of subadditive valuations. Here, if the valuations can only be accessed by value queries, only trivial approximation ratios can be guaranteed. In contrast, we present algorithms that use demand queries and obtain an approximation ratio of 2 + ϵ for the general problem and 2 for maximization subject to a cardinality constraint. We guarantee these approximation ratios even when the valuations are non-monotone. We show that these ratios are essentially optimal, in the sense that for any constant ϵ &gt; 0 , obtaining an approximation ratio of 2 - ϵ requires exponentially many demand queries.</description><subject>Algorithm Analysis and Problem Complexity</subject><subject>Algorithms</subject><subject>Approximation</subject><subject>Computer Science</subject><subject>Computer Systems Organization and Communication Networks</subject><subject>Data Structures and Information Theory</subject><subject>Greedy algorithms</subject><subject>Mathematical analysis</subject><subject>Mathematics of Computing</subject><subject>Maximization</subject><subject>Optimization</subject><subject>Queries</subject><subject>Ratios</subject><subject>Theory of Computation</subject><issn>0178-4617</issn><issn>1432-0541</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqXwA6wisTbM2OM4WaLylCp1A2vLcVxI1TywU1H4egxBYsdq7uKeO9Jh7BzhEgH0VQQgJTlgwQGUFHx_wGZIKYAiPGQzQF1wylEfs5MYNwAodJnPWLYaxqZtPu3Y9F323oyv2Y1vbVdnq2Dd1sdTdrS22-jPfu-cPd_dPi0e-HJ1_7i4XnInsRx5vfaVr0i7nLSshZQKsYYKSSvtiFCXVS6oUBJ94QvrrCJhc-VrkJXA0sk5u5h2h9C_7XwczabfhS69NEIgoUwTkFpiarnQxxj82gyhaW34MAjm24SZTJhkwvyYMPsEyQmKqdy9-PA3_Q_1BVy9Xyc</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>Badanidiyuru, Ashwinkumar</creator><creator>Dobzinski, Shahar</creator><creator>Oren, Sigal</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20190601</creationdate><title>Optimization with Demand Oracles</title><author>Badanidiyuru, Ashwinkumar ; Dobzinski, Shahar ; Oren, Sigal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-dfebeb47c6473d233511d0b14757c44179b6248531e8e8aca542a65ed03b219c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithm Analysis and Problem Complexity</topic><topic>Algorithms</topic><topic>Approximation</topic><topic>Computer Science</topic><topic>Computer Systems Organization and Communication Networks</topic><topic>Data Structures and Information Theory</topic><topic>Greedy algorithms</topic><topic>Mathematical analysis</topic><topic>Mathematics of Computing</topic><topic>Maximization</topic><topic>Optimization</topic><topic>Queries</topic><topic>Ratios</topic><topic>Theory of Computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Badanidiyuru, Ashwinkumar</creatorcontrib><creatorcontrib>Dobzinski, Shahar</creatorcontrib><creatorcontrib>Oren, Sigal</creatorcontrib><collection>CrossRef</collection><jtitle>Algorithmica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Badanidiyuru, Ashwinkumar</au><au>Dobzinski, Shahar</au><au>Oren, Sigal</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimization with Demand Oracles</atitle><jtitle>Algorithmica</jtitle><stitle>Algorithmica</stitle><date>2019-06-01</date><risdate>2019</risdate><volume>81</volume><issue>6</issue><spage>2244</spage><epage>2269</epage><pages>2244-2269</pages><issn>0178-4617</issn><eissn>1432-0541</eissn><abstract>We study maximization subject to a budget constraint , where we are given a valuation function v , budget B and a cost c i for each item i . The goal is to find a set S that maximizes v ( S ) subject to Σ i ∈ S c i ≤ B . Special cases of this problem are well-studied problems from submodular optimization. In particular, when the costs are all equal ( cardinality constraint ), a classic result by Nemhauser et al. shows that the greedy algorithm provides an e e - 1 approximation. Motivated by a large body of literature that utilizes demand queries to elicit the preferences of agents in economic settings, we develop algorithms that guarantee improved approximation ratios in the presence of demand oracles. We are able to break the e e - 1 barrier: we present algorithms that use only polynomially many demand queries and have approximation ratios of 9 8 + ϵ for the general problem and 9 8 for maximization subject to a cardinality constraint. We also consider the more general class of subadditive valuations. Here, if the valuations can only be accessed by value queries, only trivial approximation ratios can be guaranteed. In contrast, we present algorithms that use demand queries and obtain an approximation ratio of 2 + ϵ for the general problem and 2 for maximization subject to a cardinality constraint. We guarantee these approximation ratios even when the valuations are non-monotone. We show that these ratios are essentially optimal, in the sense that for any constant ϵ &gt; 0 , obtaining an approximation ratio of 2 - ϵ requires exponentially many demand queries.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s00453-018-00532-x</doi><tpages>26</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0178-4617
ispartof Algorithmica, 2019-06, Vol.81 (6), p.2244-2269
issn 0178-4617
1432-0541
language eng
recordid cdi_proquest_journals_2214131790
source SpringerLink Journals - AutoHoldings
subjects Algorithm Analysis and Problem Complexity
Algorithms
Approximation
Computer Science
Computer Systems Organization and Communication Networks
Data Structures and Information Theory
Greedy algorithms
Mathematical analysis
Mathematics of Computing
Maximization
Optimization
Queries
Ratios
Theory of Computation
title Optimization with Demand Oracles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T12%3A03%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimization%20with%20Demand%20Oracles&rft.jtitle=Algorithmica&rft.au=Badanidiyuru,%20Ashwinkumar&rft.date=2019-06-01&rft.volume=81&rft.issue=6&rft.spage=2244&rft.epage=2269&rft.pages=2244-2269&rft.issn=0178-4617&rft.eissn=1432-0541&rft_id=info:doi/10.1007/s00453-018-00532-x&rft_dat=%3Cproquest_cross%3E2214131790%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2214131790&rft_id=info:pmid/&rfr_iscdi=true