Effect of uniform/non-uniform magnetic field and jet impingement on the hydrodynamic and heat transfer performance of nanofluids

•Effect of uniform and non-uniform magnetic field on flow as well as heat transfer.•Effect of Cu, Al, TiO2 and hybrid (Cu + TiO2) nanofluids.•Direct as well as transverse jet impingement comparison and evaluation.•Equivalent nanofluid pairs as a switching option for efficient heat transfer fluid. Ef...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of magnetism and magnetic materials 2019-06, Vol.479, p.268-281
Hauptverfasser: Nimmagadda, Rajesh, Haustein, Herman D., Godson Asirvatham, Lazarus, Wongwises, Somchai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 281
container_issue
container_start_page 268
container_title Journal of magnetism and magnetic materials
container_volume 479
creator Nimmagadda, Rajesh
Haustein, Herman D.
Godson Asirvatham, Lazarus
Wongwises, Somchai
description •Effect of uniform and non-uniform magnetic field on flow as well as heat transfer.•Effect of Cu, Al, TiO2 and hybrid (Cu + TiO2) nanofluids.•Direct as well as transverse jet impingement comparison and evaluation.•Equivalent nanofluid pairs as a switching option for efficient heat transfer fluid. Effect of uniform and non-uniform magnetic field and jet impingement on the hydrodynamic and heat transfer performance of nanofluids has been investigated numerically. Five types of magnetic field with different strengths (Ha = 0–40) are applied externally to the flow domain under direct and transverse jet (cross-flow) impingement conditions. The effect of Reynolds number (Re = 200–600), nanoparticle type (Cu, Al, TiO2, and hybrid (Cu + TiO2)), nanoparticle diameter (dp = 20 nm–80 nm) and concentration (Ø = 1 vol% to 3 vol%) on the hydrodynamic and heat transfer behavior under uniform and non-uniform magnetic field are predicted. The presence of magnetic field introduced a Lorentz force responsible for higher values of flow velocity particularly near the walls resulting in the enhancement of average Nusselt number. Moreover, the direct and transverse jet against the applied uniform/non-uniform magnetic field also enhanced the local flow velocity near the impingement region leading to enhancement in the local Nusselt number. Transverse jet exhibits higher average Nusselt number in comparison with direct jet. A maximum heat transfer enhancement of 173% is obtained for 3 vol% Cu nanofluid under magnetic field. Moreover, two equivalent nanofluid pairs are also identified that will provide a better switching option in thermal management of high power electronic devices and nuclear reactors.
doi_str_mv 10.1016/j.jmmm.2019.02.019
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2213878586</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304885318330981</els_id><sourcerecordid>2213878586</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-bf7ebcee204c8ef1b4445c14ff9bd7707d535680a4a94bb016b890334ea0c6773</originalsourceid><addsrcrecordid>eNp9kEFvGyEQhVHUSHGd_oGekHreNSzsgqVcqihNKlnqJTkjFgablQEH1pV8608vK-ec05vDe29mPoS-U9JSQofN1E4hhLYjdNuSrq1yg1ZUCtZwMQxf0Iowwhspe3aHvpYyEUIol8MK_XtyDsyMk8Pn6F3KYRNTbD5mHPQ-wuwNdh6OFuto8QQz9uHk4x4CxJqMeD4APlxsTvYSdajuxXcAPeM561gcZHyCvBTqaGDZFXVM7nj2ttyjW6ePBb596Bq9_Xp6fXxpdn-efz_-3DWGdXJuRidgNAAd4UaCoyPnvDeUO7cdrRBE2J71gySa6y0fx8pklFvCGAdNzCAEW6Mf195TTu9nKLOa0jnHulJ1HWVSyF4O1dVdXSanUjI4dco-6HxRlKiFtJrUQlotpBXpVJUaeriGoN7_10NWxXion1qfK1tlk_8s_h-Gnonb</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2213878586</pqid></control><display><type>article</type><title>Effect of uniform/non-uniform magnetic field and jet impingement on the hydrodynamic and heat transfer performance of nanofluids</title><source>Elsevier ScienceDirect Journals</source><creator>Nimmagadda, Rajesh ; Haustein, Herman D. ; Godson Asirvatham, Lazarus ; Wongwises, Somchai</creator><creatorcontrib>Nimmagadda, Rajesh ; Haustein, Herman D. ; Godson Asirvatham, Lazarus ; Wongwises, Somchai</creatorcontrib><description>•Effect of uniform and non-uniform magnetic field on flow as well as heat transfer.•Effect of Cu, Al, TiO2 and hybrid (Cu + TiO2) nanofluids.•Direct as well as transverse jet impingement comparison and evaluation.•Equivalent nanofluid pairs as a switching option for efficient heat transfer fluid. Effect of uniform and non-uniform magnetic field and jet impingement on the hydrodynamic and heat transfer performance of nanofluids has been investigated numerically. Five types of magnetic field with different strengths (Ha = 0–40) are applied externally to the flow domain under direct and transverse jet (cross-flow) impingement conditions. The effect of Reynolds number (Re = 200–600), nanoparticle type (Cu, Al, TiO2, and hybrid (Cu + TiO2)), nanoparticle diameter (dp = 20 nm–80 nm) and concentration (Ø = 1 vol% to 3 vol%) on the hydrodynamic and heat transfer behavior under uniform and non-uniform magnetic field are predicted. The presence of magnetic field introduced a Lorentz force responsible for higher values of flow velocity particularly near the walls resulting in the enhancement of average Nusselt number. Moreover, the direct and transverse jet against the applied uniform/non-uniform magnetic field also enhanced the local flow velocity near the impingement region leading to enhancement in the local Nusselt number. Transverse jet exhibits higher average Nusselt number in comparison with direct jet. A maximum heat transfer enhancement of 173% is obtained for 3 vol% Cu nanofluid under magnetic field. Moreover, two equivalent nanofluid pairs are also identified that will provide a better switching option in thermal management of high power electronic devices and nuclear reactors.</description><identifier>ISSN: 0304-8853</identifier><identifier>EISSN: 1873-4766</identifier><identifier>DOI: 10.1016/j.jmmm.2019.02.019</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Aluminum ; Computational fluid dynamics ; Copper ; Cross flow ; Direct jet ; Electronic devices ; Electrons ; Flow velocity ; Fluid flow ; Heat transfer ; Impingement ; Jet impingement ; Local flow ; Lorentz force ; Magnetic field ; Magnetic fields ; Magnetic strength ; Magnetism ; Nanofluid ; Nanofluids ; Nanoparticles ; Nonuniform magnetic fields ; Nuclear reactors ; Nusselt number ; Reynolds number ; Thermal management ; Titanium dioxide ; Transverse jet</subject><ispartof>Journal of magnetism and magnetic materials, 2019-06, Vol.479, p.268-281</ispartof><rights>2019 Elsevier B.V.</rights><rights>Copyright Elsevier BV Jun 1, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-bf7ebcee204c8ef1b4445c14ff9bd7707d535680a4a94bb016b890334ea0c6773</citedby><cites>FETCH-LOGICAL-c328t-bf7ebcee204c8ef1b4445c14ff9bd7707d535680a4a94bb016b890334ea0c6773</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0304885318330981$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Nimmagadda, Rajesh</creatorcontrib><creatorcontrib>Haustein, Herman D.</creatorcontrib><creatorcontrib>Godson Asirvatham, Lazarus</creatorcontrib><creatorcontrib>Wongwises, Somchai</creatorcontrib><title>Effect of uniform/non-uniform magnetic field and jet impingement on the hydrodynamic and heat transfer performance of nanofluids</title><title>Journal of magnetism and magnetic materials</title><description>•Effect of uniform and non-uniform magnetic field on flow as well as heat transfer.•Effect of Cu, Al, TiO2 and hybrid (Cu + TiO2) nanofluids.•Direct as well as transverse jet impingement comparison and evaluation.•Equivalent nanofluid pairs as a switching option for efficient heat transfer fluid. Effect of uniform and non-uniform magnetic field and jet impingement on the hydrodynamic and heat transfer performance of nanofluids has been investigated numerically. Five types of magnetic field with different strengths (Ha = 0–40) are applied externally to the flow domain under direct and transverse jet (cross-flow) impingement conditions. The effect of Reynolds number (Re = 200–600), nanoparticle type (Cu, Al, TiO2, and hybrid (Cu + TiO2)), nanoparticle diameter (dp = 20 nm–80 nm) and concentration (Ø = 1 vol% to 3 vol%) on the hydrodynamic and heat transfer behavior under uniform and non-uniform magnetic field are predicted. The presence of magnetic field introduced a Lorentz force responsible for higher values of flow velocity particularly near the walls resulting in the enhancement of average Nusselt number. Moreover, the direct and transverse jet against the applied uniform/non-uniform magnetic field also enhanced the local flow velocity near the impingement region leading to enhancement in the local Nusselt number. Transverse jet exhibits higher average Nusselt number in comparison with direct jet. A maximum heat transfer enhancement of 173% is obtained for 3 vol% Cu nanofluid under magnetic field. Moreover, two equivalent nanofluid pairs are also identified that will provide a better switching option in thermal management of high power electronic devices and nuclear reactors.</description><subject>Aluminum</subject><subject>Computational fluid dynamics</subject><subject>Copper</subject><subject>Cross flow</subject><subject>Direct jet</subject><subject>Electronic devices</subject><subject>Electrons</subject><subject>Flow velocity</subject><subject>Fluid flow</subject><subject>Heat transfer</subject><subject>Impingement</subject><subject>Jet impingement</subject><subject>Local flow</subject><subject>Lorentz force</subject><subject>Magnetic field</subject><subject>Magnetic fields</subject><subject>Magnetic strength</subject><subject>Magnetism</subject><subject>Nanofluid</subject><subject>Nanofluids</subject><subject>Nanoparticles</subject><subject>Nonuniform magnetic fields</subject><subject>Nuclear reactors</subject><subject>Nusselt number</subject><subject>Reynolds number</subject><subject>Thermal management</subject><subject>Titanium dioxide</subject><subject>Transverse jet</subject><issn>0304-8853</issn><issn>1873-4766</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kEFvGyEQhVHUSHGd_oGekHreNSzsgqVcqihNKlnqJTkjFgablQEH1pV8608vK-ec05vDe29mPoS-U9JSQofN1E4hhLYjdNuSrq1yg1ZUCtZwMQxf0Iowwhspe3aHvpYyEUIol8MK_XtyDsyMk8Pn6F3KYRNTbD5mHPQ-wuwNdh6OFuto8QQz9uHk4x4CxJqMeD4APlxsTvYSdajuxXcAPeM561gcZHyCvBTqaGDZFXVM7nj2ttyjW6ePBb596Bq9_Xp6fXxpdn-efz_-3DWGdXJuRidgNAAd4UaCoyPnvDeUO7cdrRBE2J71gySa6y0fx8pklFvCGAdNzCAEW6Mf195TTu9nKLOa0jnHulJ1HWVSyF4O1dVdXSanUjI4dco-6HxRlKiFtJrUQlotpBXpVJUaeriGoN7_10NWxXion1qfK1tlk_8s_h-Gnonb</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>Nimmagadda, Rajesh</creator><creator>Haustein, Herman D.</creator><creator>Godson Asirvatham, Lazarus</creator><creator>Wongwises, Somchai</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20190601</creationdate><title>Effect of uniform/non-uniform magnetic field and jet impingement on the hydrodynamic and heat transfer performance of nanofluids</title><author>Nimmagadda, Rajesh ; Haustein, Herman D. ; Godson Asirvatham, Lazarus ; Wongwises, Somchai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-bf7ebcee204c8ef1b4445c14ff9bd7707d535680a4a94bb016b890334ea0c6773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aluminum</topic><topic>Computational fluid dynamics</topic><topic>Copper</topic><topic>Cross flow</topic><topic>Direct jet</topic><topic>Electronic devices</topic><topic>Electrons</topic><topic>Flow velocity</topic><topic>Fluid flow</topic><topic>Heat transfer</topic><topic>Impingement</topic><topic>Jet impingement</topic><topic>Local flow</topic><topic>Lorentz force</topic><topic>Magnetic field</topic><topic>Magnetic fields</topic><topic>Magnetic strength</topic><topic>Magnetism</topic><topic>Nanofluid</topic><topic>Nanofluids</topic><topic>Nanoparticles</topic><topic>Nonuniform magnetic fields</topic><topic>Nuclear reactors</topic><topic>Nusselt number</topic><topic>Reynolds number</topic><topic>Thermal management</topic><topic>Titanium dioxide</topic><topic>Transverse jet</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nimmagadda, Rajesh</creatorcontrib><creatorcontrib>Haustein, Herman D.</creatorcontrib><creatorcontrib>Godson Asirvatham, Lazarus</creatorcontrib><creatorcontrib>Wongwises, Somchai</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of magnetism and magnetic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nimmagadda, Rajesh</au><au>Haustein, Herman D.</au><au>Godson Asirvatham, Lazarus</au><au>Wongwises, Somchai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of uniform/non-uniform magnetic field and jet impingement on the hydrodynamic and heat transfer performance of nanofluids</atitle><jtitle>Journal of magnetism and magnetic materials</jtitle><date>2019-06-01</date><risdate>2019</risdate><volume>479</volume><spage>268</spage><epage>281</epage><pages>268-281</pages><issn>0304-8853</issn><eissn>1873-4766</eissn><abstract>•Effect of uniform and non-uniform magnetic field on flow as well as heat transfer.•Effect of Cu, Al, TiO2 and hybrid (Cu + TiO2) nanofluids.•Direct as well as transverse jet impingement comparison and evaluation.•Equivalent nanofluid pairs as a switching option for efficient heat transfer fluid. Effect of uniform and non-uniform magnetic field and jet impingement on the hydrodynamic and heat transfer performance of nanofluids has been investigated numerically. Five types of magnetic field with different strengths (Ha = 0–40) are applied externally to the flow domain under direct and transverse jet (cross-flow) impingement conditions. The effect of Reynolds number (Re = 200–600), nanoparticle type (Cu, Al, TiO2, and hybrid (Cu + TiO2)), nanoparticle diameter (dp = 20 nm–80 nm) and concentration (Ø = 1 vol% to 3 vol%) on the hydrodynamic and heat transfer behavior under uniform and non-uniform magnetic field are predicted. The presence of magnetic field introduced a Lorentz force responsible for higher values of flow velocity particularly near the walls resulting in the enhancement of average Nusselt number. Moreover, the direct and transverse jet against the applied uniform/non-uniform magnetic field also enhanced the local flow velocity near the impingement region leading to enhancement in the local Nusselt number. Transverse jet exhibits higher average Nusselt number in comparison with direct jet. A maximum heat transfer enhancement of 173% is obtained for 3 vol% Cu nanofluid under magnetic field. Moreover, two equivalent nanofluid pairs are also identified that will provide a better switching option in thermal management of high power electronic devices and nuclear reactors.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jmmm.2019.02.019</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0304-8853
ispartof Journal of magnetism and magnetic materials, 2019-06, Vol.479, p.268-281
issn 0304-8853
1873-4766
language eng
recordid cdi_proquest_journals_2213878586
source Elsevier ScienceDirect Journals
subjects Aluminum
Computational fluid dynamics
Copper
Cross flow
Direct jet
Electronic devices
Electrons
Flow velocity
Fluid flow
Heat transfer
Impingement
Jet impingement
Local flow
Lorentz force
Magnetic field
Magnetic fields
Magnetic strength
Magnetism
Nanofluid
Nanofluids
Nanoparticles
Nonuniform magnetic fields
Nuclear reactors
Nusselt number
Reynolds number
Thermal management
Titanium dioxide
Transverse jet
title Effect of uniform/non-uniform magnetic field and jet impingement on the hydrodynamic and heat transfer performance of nanofluids
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T14%3A13%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20uniform/non-uniform%20magnetic%20field%20and%20jet%20impingement%20on%20the%20hydrodynamic%20and%20heat%20transfer%20performance%20of%20nanofluids&rft.jtitle=Journal%20of%20magnetism%20and%20magnetic%20materials&rft.au=Nimmagadda,%20Rajesh&rft.date=2019-06-01&rft.volume=479&rft.spage=268&rft.epage=281&rft.pages=268-281&rft.issn=0304-8853&rft.eissn=1873-4766&rft_id=info:doi/10.1016/j.jmmm.2019.02.019&rft_dat=%3Cproquest_cross%3E2213878586%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2213878586&rft_id=info:pmid/&rft_els_id=S0304885318330981&rfr_iscdi=true