Slurry‐Fabricable Li+‐Conductive Polymeric Binders for Practical All‐Solid‐State Lithium‐Ion Batteries Enabled by Solvate Ionic Liquids

For mass production of all‐solid‐state lithium‐ion batteries (ASLBs) employing highly Li+ conductive and mechanically sinterable sulfide solid electrolytes (SEs), the wet‐slurry process is imperative. Unfortunately, the poor chemical stability of sulfide SEs severely restrict available candidates fo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced energy materials 2019-04, Vol.9 (16), p.n/a
Hauptverfasser: Oh, Dae Yang, Nam, Young Jin, Park, Kern Ho, Jung, Sung Hoo, Kim, Kyu Tae, Ha, A. Reum, Jung, Yoon Seok
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 16
container_start_page
container_title Advanced energy materials
container_volume 9
creator Oh, Dae Yang
Nam, Young Jin
Park, Kern Ho
Jung, Sung Hoo
Kim, Kyu Tae
Ha, A. Reum
Jung, Yoon Seok
description For mass production of all‐solid‐state lithium‐ion batteries (ASLBs) employing highly Li+ conductive and mechanically sinterable sulfide solid electrolytes (SEs), the wet‐slurry process is imperative. Unfortunately, the poor chemical stability of sulfide SEs severely restrict available candidates for solvents and in turn polymeric binders. Moreover, the binders interrupt Li+‐ionic contacts at interfaces, resulting in the below par electrochemical performance. In this work, a new scalable slurry fabrication protocol for sheet‐type ASLB electrodes made of Li+‐conductive polymeric binders is reported. The use of intermediate‐polarity solvent (e.g., dibromomethane) for the slurry allows for accommodating Li6PS5Cl and solvate‐ionic‐liquid‐based polymeric binders (NBR‐Li(G3)TFSI, NBR: nitrile−butadiene rubber, G3: triethylene glycol dimethyl ether, LiTFSI: lithium bis(trifluoromethanesulfonyl)imide) together without suffering from undesirable side reactions or phase separation. The LiNi0.6Co0.2Mn0.2O2 and Li4Ti5O12 electrodes employing NBR‐Li(G3)TFSI show high capacities of 174 and 160 mA h g−1 at 30 °C, respectively, which are far superior to those using conventional NBR (144 and 76 mA h g−1). Moreover, high areal capacity of 7.4 mA h cm−2 is highlighted for the LiNi0.7Co0.15Mn0.15O2 electrodes with ultrahigh mass loading of 45 mg cm−2. The facilitated Li+‐ionic contacts at interfaces paved by NBR‐Li(G3)TFSI are evidenced by the complementary analysis from electrochemical and 7Li nuclear magnetic resonance measurements. A new slurry‐fabricable solvate ionic liquid (SIL)‐based Li+‐conductive polymeric binder for all‐solid‐state lithium‐ion batteries is developed. Sheet‐type electrodes are tailored from a slurry using solvent with intermediate polarity (e.g., dibromomethane) which enables the accommodation of sulfide solid electrolytes and SIL together without suffering from any side reactions or phase separation. The resulting electrodes significantly outperform those made of conventional insulating binders.
doi_str_mv 10.1002/aenm.201802927
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2213772063</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2213772063</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3567-519401319c5983a5b16069a0932f1e97fa8d4075104cd10a32a7b3ec7fd70ae93</originalsourceid><addsrcrecordid>eNqFkLFOwzAQhiMEElXpymyJEbWc7SSOx7ZqoVKASoU5chJHuHKS1k6KsvEI8Io8CY6Kysgtd_b933_S73nXGCYYgNwJWZUTAjgCwgk78wY4xP44jHw4P82UXHoja7fgyucYKB14XxvdGtN9f3wuRWpUJlItUaxu3ce8rvI2a9RBonWtu1K6NZqpKpfGoqI2aG2EW2dCo6nWDtjUWuV9b0TTmzRvqi3de1VXaCaaxhlIixZVfyNHaYcccOilTuCsY7VvVW6vvItCaCtHv33ovS4XL_OHcfx8v5pP43FGg5CNA8x9wBTzLOARFUGKQwi5AE5JgSVnhYhyH1iAwc9yDIISwVIqM1bkDITkdOjdHH13pt630jbJtm5N5U4mhGDKGIGQOtXkqMpMba2RRbIzqhSmSzAkffJJn3xySt4B_Ai8Ky27f9TJdPH0-Mf-AOV4jPk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2213772063</pqid></control><display><type>article</type><title>Slurry‐Fabricable Li+‐Conductive Polymeric Binders for Practical All‐Solid‐State Lithium‐Ion Batteries Enabled by Solvate Ionic Liquids</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Oh, Dae Yang ; Nam, Young Jin ; Park, Kern Ho ; Jung, Sung Hoo ; Kim, Kyu Tae ; Ha, A. Reum ; Jung, Yoon Seok</creator><creatorcontrib>Oh, Dae Yang ; Nam, Young Jin ; Park, Kern Ho ; Jung, Sung Hoo ; Kim, Kyu Tae ; Ha, A. Reum ; Jung, Yoon Seok</creatorcontrib><description>For mass production of all‐solid‐state lithium‐ion batteries (ASLBs) employing highly Li+ conductive and mechanically sinterable sulfide solid electrolytes (SEs), the wet‐slurry process is imperative. Unfortunately, the poor chemical stability of sulfide SEs severely restrict available candidates for solvents and in turn polymeric binders. Moreover, the binders interrupt Li+‐ionic contacts at interfaces, resulting in the below par electrochemical performance. In this work, a new scalable slurry fabrication protocol for sheet‐type ASLB electrodes made of Li+‐conductive polymeric binders is reported. The use of intermediate‐polarity solvent (e.g., dibromomethane) for the slurry allows for accommodating Li6PS5Cl and solvate‐ionic‐liquid‐based polymeric binders (NBR‐Li(G3)TFSI, NBR: nitrile−butadiene rubber, G3: triethylene glycol dimethyl ether, LiTFSI: lithium bis(trifluoromethanesulfonyl)imide) together without suffering from undesirable side reactions or phase separation. The LiNi0.6Co0.2Mn0.2O2 and Li4Ti5O12 electrodes employing NBR‐Li(G3)TFSI show high capacities of 174 and 160 mA h g−1 at 30 °C, respectively, which are far superior to those using conventional NBR (144 and 76 mA h g−1). Moreover, high areal capacity of 7.4 mA h cm−2 is highlighted for the LiNi0.7Co0.15Mn0.15O2 electrodes with ultrahigh mass loading of 45 mg cm−2. The facilitated Li+‐ionic contacts at interfaces paved by NBR‐Li(G3)TFSI are evidenced by the complementary analysis from electrochemical and 7Li nuclear magnetic resonance measurements. A new slurry‐fabricable solvate ionic liquid (SIL)‐based Li+‐conductive polymeric binder for all‐solid‐state lithium‐ion batteries is developed. Sheet‐type electrodes are tailored from a slurry using solvent with intermediate polarity (e.g., dibromomethane) which enables the accommodation of sulfide solid electrolytes and SIL together without suffering from any side reactions or phase separation. The resulting electrodes significantly outperform those made of conventional insulating binders.</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><identifier>DOI: 10.1002/aenm.201802927</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>binders ; Butadiene ; composite electrodes ; Conductivity ; Dimethyl ether ; Electrochemical analysis ; Electrodes ; Fabricability ; Ionic liquids ; Ions ; Lithium isotopes ; Lithium-ion batteries ; Mass production ; Molten salt electrolytes ; Nitrile rubber ; NMR ; Nuclear magnetic resonance ; Organic chemistry ; Phase separation ; Polarity ; Slurries ; Solid electrolytes ; solid‐state batteries ; Solvents ; super‐concentrated electrolytes ; Triethylene glycol</subject><ispartof>Advanced energy materials, 2019-04, Vol.9 (16), p.n/a</ispartof><rights>2019 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3567-519401319c5983a5b16069a0932f1e97fa8d4075104cd10a32a7b3ec7fd70ae93</citedby><cites>FETCH-LOGICAL-c3567-519401319c5983a5b16069a0932f1e97fa8d4075104cd10a32a7b3ec7fd70ae93</cites><orcidid>0000-0003-0357-9508</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faenm.201802927$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faenm.201802927$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Oh, Dae Yang</creatorcontrib><creatorcontrib>Nam, Young Jin</creatorcontrib><creatorcontrib>Park, Kern Ho</creatorcontrib><creatorcontrib>Jung, Sung Hoo</creatorcontrib><creatorcontrib>Kim, Kyu Tae</creatorcontrib><creatorcontrib>Ha, A. Reum</creatorcontrib><creatorcontrib>Jung, Yoon Seok</creatorcontrib><title>Slurry‐Fabricable Li+‐Conductive Polymeric Binders for Practical All‐Solid‐State Lithium‐Ion Batteries Enabled by Solvate Ionic Liquids</title><title>Advanced energy materials</title><description>For mass production of all‐solid‐state lithium‐ion batteries (ASLBs) employing highly Li+ conductive and mechanically sinterable sulfide solid electrolytes (SEs), the wet‐slurry process is imperative. Unfortunately, the poor chemical stability of sulfide SEs severely restrict available candidates for solvents and in turn polymeric binders. Moreover, the binders interrupt Li+‐ionic contacts at interfaces, resulting in the below par electrochemical performance. In this work, a new scalable slurry fabrication protocol for sheet‐type ASLB electrodes made of Li+‐conductive polymeric binders is reported. The use of intermediate‐polarity solvent (e.g., dibromomethane) for the slurry allows for accommodating Li6PS5Cl and solvate‐ionic‐liquid‐based polymeric binders (NBR‐Li(G3)TFSI, NBR: nitrile−butadiene rubber, G3: triethylene glycol dimethyl ether, LiTFSI: lithium bis(trifluoromethanesulfonyl)imide) together without suffering from undesirable side reactions or phase separation. The LiNi0.6Co0.2Mn0.2O2 and Li4Ti5O12 electrodes employing NBR‐Li(G3)TFSI show high capacities of 174 and 160 mA h g−1 at 30 °C, respectively, which are far superior to those using conventional NBR (144 and 76 mA h g−1). Moreover, high areal capacity of 7.4 mA h cm−2 is highlighted for the LiNi0.7Co0.15Mn0.15O2 electrodes with ultrahigh mass loading of 45 mg cm−2. The facilitated Li+‐ionic contacts at interfaces paved by NBR‐Li(G3)TFSI are evidenced by the complementary analysis from electrochemical and 7Li nuclear magnetic resonance measurements. A new slurry‐fabricable solvate ionic liquid (SIL)‐based Li+‐conductive polymeric binder for all‐solid‐state lithium‐ion batteries is developed. Sheet‐type electrodes are tailored from a slurry using solvent with intermediate polarity (e.g., dibromomethane) which enables the accommodation of sulfide solid electrolytes and SIL together without suffering from any side reactions or phase separation. The resulting electrodes significantly outperform those made of conventional insulating binders.</description><subject>binders</subject><subject>Butadiene</subject><subject>composite electrodes</subject><subject>Conductivity</subject><subject>Dimethyl ether</subject><subject>Electrochemical analysis</subject><subject>Electrodes</subject><subject>Fabricability</subject><subject>Ionic liquids</subject><subject>Ions</subject><subject>Lithium isotopes</subject><subject>Lithium-ion batteries</subject><subject>Mass production</subject><subject>Molten salt electrolytes</subject><subject>Nitrile rubber</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Organic chemistry</subject><subject>Phase separation</subject><subject>Polarity</subject><subject>Slurries</subject><subject>Solid electrolytes</subject><subject>solid‐state batteries</subject><subject>Solvents</subject><subject>super‐concentrated electrolytes</subject><subject>Triethylene glycol</subject><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkLFOwzAQhiMEElXpymyJEbWc7SSOx7ZqoVKASoU5chJHuHKS1k6KsvEI8Io8CY6Kysgtd_b933_S73nXGCYYgNwJWZUTAjgCwgk78wY4xP44jHw4P82UXHoja7fgyucYKB14XxvdGtN9f3wuRWpUJlItUaxu3ce8rvI2a9RBonWtu1K6NZqpKpfGoqI2aG2EW2dCo6nWDtjUWuV9b0TTmzRvqi3de1VXaCaaxhlIixZVfyNHaYcccOilTuCsY7VvVW6vvItCaCtHv33ovS4XL_OHcfx8v5pP43FGg5CNA8x9wBTzLOARFUGKQwi5AE5JgSVnhYhyH1iAwc9yDIISwVIqM1bkDITkdOjdHH13pt630jbJtm5N5U4mhGDKGIGQOtXkqMpMba2RRbIzqhSmSzAkffJJn3xySt4B_Ai8Ky27f9TJdPH0-Mf-AOV4jPk</recordid><startdate>20190425</startdate><enddate>20190425</enddate><creator>Oh, Dae Yang</creator><creator>Nam, Young Jin</creator><creator>Park, Kern Ho</creator><creator>Jung, Sung Hoo</creator><creator>Kim, Kyu Tae</creator><creator>Ha, A. Reum</creator><creator>Jung, Yoon Seok</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0357-9508</orcidid></search><sort><creationdate>20190425</creationdate><title>Slurry‐Fabricable Li+‐Conductive Polymeric Binders for Practical All‐Solid‐State Lithium‐Ion Batteries Enabled by Solvate Ionic Liquids</title><author>Oh, Dae Yang ; Nam, Young Jin ; Park, Kern Ho ; Jung, Sung Hoo ; Kim, Kyu Tae ; Ha, A. Reum ; Jung, Yoon Seok</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3567-519401319c5983a5b16069a0932f1e97fa8d4075104cd10a32a7b3ec7fd70ae93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>binders</topic><topic>Butadiene</topic><topic>composite electrodes</topic><topic>Conductivity</topic><topic>Dimethyl ether</topic><topic>Electrochemical analysis</topic><topic>Electrodes</topic><topic>Fabricability</topic><topic>Ionic liquids</topic><topic>Ions</topic><topic>Lithium isotopes</topic><topic>Lithium-ion batteries</topic><topic>Mass production</topic><topic>Molten salt electrolytes</topic><topic>Nitrile rubber</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Organic chemistry</topic><topic>Phase separation</topic><topic>Polarity</topic><topic>Slurries</topic><topic>Solid electrolytes</topic><topic>solid‐state batteries</topic><topic>Solvents</topic><topic>super‐concentrated electrolytes</topic><topic>Triethylene glycol</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oh, Dae Yang</creatorcontrib><creatorcontrib>Nam, Young Jin</creatorcontrib><creatorcontrib>Park, Kern Ho</creatorcontrib><creatorcontrib>Jung, Sung Hoo</creatorcontrib><creatorcontrib>Kim, Kyu Tae</creatorcontrib><creatorcontrib>Ha, A. Reum</creatorcontrib><creatorcontrib>Jung, Yoon Seok</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Oh, Dae Yang</au><au>Nam, Young Jin</au><au>Park, Kern Ho</au><au>Jung, Sung Hoo</au><au>Kim, Kyu Tae</au><au>Ha, A. Reum</au><au>Jung, Yoon Seok</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Slurry‐Fabricable Li+‐Conductive Polymeric Binders for Practical All‐Solid‐State Lithium‐Ion Batteries Enabled by Solvate Ionic Liquids</atitle><jtitle>Advanced energy materials</jtitle><date>2019-04-25</date><risdate>2019</risdate><volume>9</volume><issue>16</issue><epage>n/a</epage><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>For mass production of all‐solid‐state lithium‐ion batteries (ASLBs) employing highly Li+ conductive and mechanically sinterable sulfide solid electrolytes (SEs), the wet‐slurry process is imperative. Unfortunately, the poor chemical stability of sulfide SEs severely restrict available candidates for solvents and in turn polymeric binders. Moreover, the binders interrupt Li+‐ionic contacts at interfaces, resulting in the below par electrochemical performance. In this work, a new scalable slurry fabrication protocol for sheet‐type ASLB electrodes made of Li+‐conductive polymeric binders is reported. The use of intermediate‐polarity solvent (e.g., dibromomethane) for the slurry allows for accommodating Li6PS5Cl and solvate‐ionic‐liquid‐based polymeric binders (NBR‐Li(G3)TFSI, NBR: nitrile−butadiene rubber, G3: triethylene glycol dimethyl ether, LiTFSI: lithium bis(trifluoromethanesulfonyl)imide) together without suffering from undesirable side reactions or phase separation. The LiNi0.6Co0.2Mn0.2O2 and Li4Ti5O12 electrodes employing NBR‐Li(G3)TFSI show high capacities of 174 and 160 mA h g−1 at 30 °C, respectively, which are far superior to those using conventional NBR (144 and 76 mA h g−1). Moreover, high areal capacity of 7.4 mA h cm−2 is highlighted for the LiNi0.7Co0.15Mn0.15O2 electrodes with ultrahigh mass loading of 45 mg cm−2. The facilitated Li+‐ionic contacts at interfaces paved by NBR‐Li(G3)TFSI are evidenced by the complementary analysis from electrochemical and 7Li nuclear magnetic resonance measurements. A new slurry‐fabricable solvate ionic liquid (SIL)‐based Li+‐conductive polymeric binder for all‐solid‐state lithium‐ion batteries is developed. Sheet‐type electrodes are tailored from a slurry using solvent with intermediate polarity (e.g., dibromomethane) which enables the accommodation of sulfide solid electrolytes and SIL together without suffering from any side reactions or phase separation. The resulting electrodes significantly outperform those made of conventional insulating binders.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/aenm.201802927</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-0357-9508</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1614-6832
ispartof Advanced energy materials, 2019-04, Vol.9 (16), p.n/a
issn 1614-6832
1614-6840
language eng
recordid cdi_proquest_journals_2213772063
source Wiley Online Library Journals Frontfile Complete
subjects binders
Butadiene
composite electrodes
Conductivity
Dimethyl ether
Electrochemical analysis
Electrodes
Fabricability
Ionic liquids
Ions
Lithium isotopes
Lithium-ion batteries
Mass production
Molten salt electrolytes
Nitrile rubber
NMR
Nuclear magnetic resonance
Organic chemistry
Phase separation
Polarity
Slurries
Solid electrolytes
solid‐state batteries
Solvents
super‐concentrated electrolytes
Triethylene glycol
title Slurry‐Fabricable Li+‐Conductive Polymeric Binders for Practical All‐Solid‐State Lithium‐Ion Batteries Enabled by Solvate Ionic Liquids
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T02%3A34%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Slurry%E2%80%90Fabricable%20Li+%E2%80%90Conductive%20Polymeric%20Binders%20for%20Practical%20All%E2%80%90Solid%E2%80%90State%20Lithium%E2%80%90Ion%20Batteries%20Enabled%20by%20Solvate%20Ionic%20Liquids&rft.jtitle=Advanced%20energy%20materials&rft.au=Oh,%20Dae%20Yang&rft.date=2019-04-25&rft.volume=9&rft.issue=16&rft.epage=n/a&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/10.1002/aenm.201802927&rft_dat=%3Cproquest_cross%3E2213772063%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2213772063&rft_id=info:pmid/&rfr_iscdi=true