The MineRL 2019 Competition on Sample Efficient Reinforcement Learning using Human Priors

Though deep reinforcement learning has led to breakthroughs in many difficult domains, these successes have required an ever-increasing number of samples. As state-of-the-art reinforcement learning (RL) systems require an exponentially increasing number of samples, their development is restricted to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2021-01
Hauptverfasser: Guss, William H, Codel, Cayden, Hofmann, Katja, Houghton, Brandon, Kuno, Noboru, Milani, Stephanie, Mohanty, Sharada, Diego Perez Liebana, Salakhutdinov, Ruslan, Topin, Nicholay, Veloso, Manuela, Wang, Phillip
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!