Universal Gröbner Bases of Toric Ideals of Combinatorial Neural Codes
In the 1970s, O'Keefe and Dostrovsky discovered that certain neurons, called place cells, in an animal's brain are tied to its location within its arena. A combinatorial neural code is a collection of \(0/1\)-vectors which encode the patterns of co-firing activity among the place cells. Gr...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2019-04 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Beer, Melissa Davis, Robert Elgin, Thomas Hertel, Matthew Laws, Kira Mavi, Rajinder Mercurio, Paula Newlon, Alexandra |
description | In the 1970s, O'Keefe and Dostrovsky discovered that certain neurons, called place cells, in an animal's brain are tied to its location within its arena. A combinatorial neural code is a collection of \(0/1\)-vectors which encode the patterns of co-firing activity among the place cells. Gross, Obatake, and Youngs have recently used techniques from toric algebra to study when a neural code is \(0\)- \(1\)-, or \(2\)-inductively pierced: a property that allows one to reconstruct a Venn diagram-like planar figure that acts as a geometric schematic for the neural co-firing patterns. This article examines their work closely by focusing on a variety of classes of combinatorial neural codes. In particular, we identify universal Gr\"obner bases of the toric ideal for these codes. |
doi_str_mv | 10.48550/arxiv.1904.10127 |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2213627036</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2213627036</sourcerecordid><originalsourceid>FETCH-proquest_journals_22136270363</originalsourceid><addsrcrecordid>eNqNik0OgjAYBRsTE4lyAHdNXIPtVwq4lfi3cYVrUqQkJUi1BeLJvIAXszEewNXkvRmElpSEUco5WQvzVGNINyQKKaGQTJAHjNEgjQBmyLe2IYRAnADnzEP7S6dGaaxo8cG8X2UnDd4KKy3WNc61UVd8qqRovzvTt1J1one3689yMA6ZrqRdoGntIun_OEer_S7PjsHd6McgbV80ejCdUwUAZTEkhMXsv-oDz1xBbQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2213627036</pqid></control><display><type>article</type><title>Universal Gröbner Bases of Toric Ideals of Combinatorial Neural Codes</title><source>Free E- Journals</source><creator>Beer, Melissa ; Davis, Robert ; Elgin, Thomas ; Hertel, Matthew ; Laws, Kira ; Mavi, Rajinder ; Mercurio, Paula ; Newlon, Alexandra</creator><creatorcontrib>Beer, Melissa ; Davis, Robert ; Elgin, Thomas ; Hertel, Matthew ; Laws, Kira ; Mavi, Rajinder ; Mercurio, Paula ; Newlon, Alexandra</creatorcontrib><description>In the 1970s, O'Keefe and Dostrovsky discovered that certain neurons, called place cells, in an animal's brain are tied to its location within its arena. A combinatorial neural code is a collection of \(0/1\)-vectors which encode the patterns of co-firing activity among the place cells. Gross, Obatake, and Youngs have recently used techniques from toric algebra to study when a neural code is \(0\)- \(1\)-, or \(2\)-inductively pierced: a property that allows one to reconstruct a Venn diagram-like planar figure that acts as a geometric schematic for the neural co-firing patterns. This article examines their work closely by focusing on a variety of classes of combinatorial neural codes. In particular, we identify universal Gr\"obner bases of the toric ideal for these codes.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1904.10127</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Brain ; Codes ; Combinatorial analysis ; Mathematical analysis ; Vectors (mathematics) ; Venn diagrams</subject><ispartof>arXiv.org, 2019-04</ispartof><rights>2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780,27904</link.rule.ids></links><search><creatorcontrib>Beer, Melissa</creatorcontrib><creatorcontrib>Davis, Robert</creatorcontrib><creatorcontrib>Elgin, Thomas</creatorcontrib><creatorcontrib>Hertel, Matthew</creatorcontrib><creatorcontrib>Laws, Kira</creatorcontrib><creatorcontrib>Mavi, Rajinder</creatorcontrib><creatorcontrib>Mercurio, Paula</creatorcontrib><creatorcontrib>Newlon, Alexandra</creatorcontrib><title>Universal Gröbner Bases of Toric Ideals of Combinatorial Neural Codes</title><title>arXiv.org</title><description>In the 1970s, O'Keefe and Dostrovsky discovered that certain neurons, called place cells, in an animal's brain are tied to its location within its arena. A combinatorial neural code is a collection of \(0/1\)-vectors which encode the patterns of co-firing activity among the place cells. Gross, Obatake, and Youngs have recently used techniques from toric algebra to study when a neural code is \(0\)- \(1\)-, or \(2\)-inductively pierced: a property that allows one to reconstruct a Venn diagram-like planar figure that acts as a geometric schematic for the neural co-firing patterns. This article examines their work closely by focusing on a variety of classes of combinatorial neural codes. In particular, we identify universal Gr\"obner bases of the toric ideal for these codes.</description><subject>Brain</subject><subject>Codes</subject><subject>Combinatorial analysis</subject><subject>Mathematical analysis</subject><subject>Vectors (mathematics)</subject><subject>Venn diagrams</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNik0OgjAYBRsTE4lyAHdNXIPtVwq4lfi3cYVrUqQkJUi1BeLJvIAXszEewNXkvRmElpSEUco5WQvzVGNINyQKKaGQTJAHjNEgjQBmyLe2IYRAnADnzEP7S6dGaaxo8cG8X2UnDd4KKy3WNc61UVd8qqRovzvTt1J1one3689yMA6ZrqRdoGntIun_OEer_S7PjsHd6McgbV80ejCdUwUAZTEkhMXsv-oDz1xBbQ</recordid><startdate>20190423</startdate><enddate>20190423</enddate><creator>Beer, Melissa</creator><creator>Davis, Robert</creator><creator>Elgin, Thomas</creator><creator>Hertel, Matthew</creator><creator>Laws, Kira</creator><creator>Mavi, Rajinder</creator><creator>Mercurio, Paula</creator><creator>Newlon, Alexandra</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20190423</creationdate><title>Universal Gröbner Bases of Toric Ideals of Combinatorial Neural Codes</title><author>Beer, Melissa ; Davis, Robert ; Elgin, Thomas ; Hertel, Matthew ; Laws, Kira ; Mavi, Rajinder ; Mercurio, Paula ; Newlon, Alexandra</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_22136270363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Brain</topic><topic>Codes</topic><topic>Combinatorial analysis</topic><topic>Mathematical analysis</topic><topic>Vectors (mathematics)</topic><topic>Venn diagrams</topic><toplevel>online_resources</toplevel><creatorcontrib>Beer, Melissa</creatorcontrib><creatorcontrib>Davis, Robert</creatorcontrib><creatorcontrib>Elgin, Thomas</creatorcontrib><creatorcontrib>Hertel, Matthew</creatorcontrib><creatorcontrib>Laws, Kira</creatorcontrib><creatorcontrib>Mavi, Rajinder</creatorcontrib><creatorcontrib>Mercurio, Paula</creatorcontrib><creatorcontrib>Newlon, Alexandra</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Beer, Melissa</au><au>Davis, Robert</au><au>Elgin, Thomas</au><au>Hertel, Matthew</au><au>Laws, Kira</au><au>Mavi, Rajinder</au><au>Mercurio, Paula</au><au>Newlon, Alexandra</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Universal Gröbner Bases of Toric Ideals of Combinatorial Neural Codes</atitle><jtitle>arXiv.org</jtitle><date>2019-04-23</date><risdate>2019</risdate><eissn>2331-8422</eissn><abstract>In the 1970s, O'Keefe and Dostrovsky discovered that certain neurons, called place cells, in an animal's brain are tied to its location within its arena. A combinatorial neural code is a collection of \(0/1\)-vectors which encode the patterns of co-firing activity among the place cells. Gross, Obatake, and Youngs have recently used techniques from toric algebra to study when a neural code is \(0\)- \(1\)-, or \(2\)-inductively pierced: a property that allows one to reconstruct a Venn diagram-like planar figure that acts as a geometric schematic for the neural co-firing patterns. This article examines their work closely by focusing on a variety of classes of combinatorial neural codes. In particular, we identify universal Gr\"obner bases of the toric ideal for these codes.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1904.10127</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2019-04 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2213627036 |
source | Free E- Journals |
subjects | Brain Codes Combinatorial analysis Mathematical analysis Vectors (mathematics) Venn diagrams |
title | Universal Gröbner Bases of Toric Ideals of Combinatorial Neural Codes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T07%3A51%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Universal%20Gr%C3%B6bner%20Bases%20of%20Toric%20Ideals%20of%20Combinatorial%20Neural%20Codes&rft.jtitle=arXiv.org&rft.au=Beer,%20Melissa&rft.date=2019-04-23&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1904.10127&rft_dat=%3Cproquest%3E2213627036%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2213627036&rft_id=info:pmid/&rfr_iscdi=true |