On geodesic bifurcations of product spaces

The bifurcation is described as a situation where there exist at least two different geodesics going through the given point in the given direction. In the previous works, the examples of local and closed bifurcations are constructed. This paper is devoted to the further study of these bifurcations....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical sciences (New York, N.Y.) N.Y.), 2019-05, Vol.239 (1), p.86-91
Hauptverfasser: Rýparová, Lenka, Mikeš, Josef, Sabykanov, Almaz
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 91
container_issue 1
container_start_page 86
container_title Journal of mathematical sciences (New York, N.Y.)
container_volume 239
creator Rýparová, Lenka
Mikeš, Josef
Sabykanov, Almaz
description The bifurcation is described as a situation where there exist at least two different geodesics going through the given point in the given direction. In the previous works, the examples of local and closed bifurcations are constructed. This paper is devoted to the further study of these bifurcations. We construct an example of n -dimensional (pseudo-) Riemannian and Kählerian spaces which are product ones that admit a local bifurcation of geodesics and also a closed geodesic.
doi_str_mv 10.1007/s10958-019-04290-1
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2213194663</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A600035457</galeid><sourcerecordid>A600035457</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4171-299ec7f563f12cc9e7ae53fb71785511d359158d25476be29b1bc7fba6c74be13</originalsourceid><addsrcrecordid>eNp9kV1LwzAUhoMoOKd_wKuCVwqZOUnTNJdj-AWC4Md1SNOTUtnambSg_97ohDEYkouEw_PkcM5LyDmwGTCmriMwLUvKQFOWc80oHJAJSCVoqbQ8TG-mOBVC5cfkJMZ3lqSiFBNy9dRlDfY1xtZlVevH4OzQ9l3Mep-tQ1-Pbsji2jqMp-TI22XEs797St5ub14X9_Tx6e5hMX-kLgcFlGuNTnlZCA_cOY3KohS-UqBKKQFqITXIsuYyV0WFXFdQJb6yhVN5hSCm5GLzb2r_MWIczHs_hi61NJyDAJ0XhdhSjV2iaTvfD8G6VRudmRdpPCHzNP6U0D1Ugx0Gu-w79G0q7_CzPXw6Na5at1e43BESM-Dn0NgxRvPw8rzL8g3rQh9jQG_WoV3Z8GWAmZ8YzSZGk2I0vzGan22IjRQT3DUYttv4x_oGURObAg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2213194663</pqid></control><display><type>article</type><title>On geodesic bifurcations of product spaces</title><source>SpringerLink Journals - AutoHoldings</source><creator>Rýparová, Lenka ; Mikeš, Josef ; Sabykanov, Almaz</creator><creatorcontrib>Rýparová, Lenka ; Mikeš, Josef ; Sabykanov, Almaz</creatorcontrib><description>The bifurcation is described as a situation where there exist at least two different geodesics going through the given point in the given direction. In the previous works, the examples of local and closed bifurcations are constructed. This paper is devoted to the further study of these bifurcations. We construct an example of n -dimensional (pseudo-) Riemannian and Kählerian spaces which are product ones that admit a local bifurcation of geodesics and also a closed geodesic.</description><identifier>ISSN: 1072-3374</identifier><identifier>EISSN: 1573-8795</identifier><identifier>DOI: 10.1007/s10958-019-04290-1</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Bifurcations ; Differential equations ; Geodesy ; Mathematics ; Mathematics and Statistics</subject><ispartof>Journal of mathematical sciences (New York, N.Y.), 2019-05, Vol.239 (1), p.86-91</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>COPYRIGHT 2019 Springer</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4171-299ec7f563f12cc9e7ae53fb71785511d359158d25476be29b1bc7fba6c74be13</citedby><cites>FETCH-LOGICAL-c4171-299ec7f563f12cc9e7ae53fb71785511d359158d25476be29b1bc7fba6c74be13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10958-019-04290-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10958-019-04290-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Rýparová, Lenka</creatorcontrib><creatorcontrib>Mikeš, Josef</creatorcontrib><creatorcontrib>Sabykanov, Almaz</creatorcontrib><title>On geodesic bifurcations of product spaces</title><title>Journal of mathematical sciences (New York, N.Y.)</title><addtitle>J Math Sci</addtitle><description>The bifurcation is described as a situation where there exist at least two different geodesics going through the given point in the given direction. In the previous works, the examples of local and closed bifurcations are constructed. This paper is devoted to the further study of these bifurcations. We construct an example of n -dimensional (pseudo-) Riemannian and Kählerian spaces which are product ones that admit a local bifurcation of geodesics and also a closed geodesic.</description><subject>Bifurcations</subject><subject>Differential equations</subject><subject>Geodesy</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>1072-3374</issn><issn>1573-8795</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kV1LwzAUhoMoOKd_wKuCVwqZOUnTNJdj-AWC4Md1SNOTUtnambSg_97ohDEYkouEw_PkcM5LyDmwGTCmriMwLUvKQFOWc80oHJAJSCVoqbQ8TG-mOBVC5cfkJMZ3lqSiFBNy9dRlDfY1xtZlVevH4OzQ9l3Mep-tQ1-Pbsji2jqMp-TI22XEs797St5ub14X9_Tx6e5hMX-kLgcFlGuNTnlZCA_cOY3KohS-UqBKKQFqITXIsuYyV0WFXFdQJb6yhVN5hSCm5GLzb2r_MWIczHs_hi61NJyDAJ0XhdhSjV2iaTvfD8G6VRudmRdpPCHzNP6U0D1Ugx0Gu-w79G0q7_CzPXw6Na5at1e43BESM-Dn0NgxRvPw8rzL8g3rQh9jQG_WoV3Z8GWAmZ8YzSZGk2I0vzGan22IjRQT3DUYttv4x_oGURObAg</recordid><startdate>20190504</startdate><enddate>20190504</enddate><creator>Rýparová, Lenka</creator><creator>Mikeš, Josef</creator><creator>Sabykanov, Almaz</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope></search><sort><creationdate>20190504</creationdate><title>On geodesic bifurcations of product spaces</title><author>Rýparová, Lenka ; Mikeš, Josef ; Sabykanov, Almaz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4171-299ec7f563f12cc9e7ae53fb71785511d359158d25476be29b1bc7fba6c74be13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Bifurcations</topic><topic>Differential equations</topic><topic>Geodesy</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rýparová, Lenka</creatorcontrib><creatorcontrib>Mikeš, Josef</creatorcontrib><creatorcontrib>Sabykanov, Almaz</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rýparová, Lenka</au><au>Mikeš, Josef</au><au>Sabykanov, Almaz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On geodesic bifurcations of product spaces</atitle><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle><stitle>J Math Sci</stitle><date>2019-05-04</date><risdate>2019</risdate><volume>239</volume><issue>1</issue><spage>86</spage><epage>91</epage><pages>86-91</pages><issn>1072-3374</issn><eissn>1573-8795</eissn><abstract>The bifurcation is described as a situation where there exist at least two different geodesics going through the given point in the given direction. In the previous works, the examples of local and closed bifurcations are constructed. This paper is devoted to the further study of these bifurcations. We construct an example of n -dimensional (pseudo-) Riemannian and Kählerian spaces which are product ones that admit a local bifurcation of geodesics and also a closed geodesic.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10958-019-04290-1</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1072-3374
ispartof Journal of mathematical sciences (New York, N.Y.), 2019-05, Vol.239 (1), p.86-91
issn 1072-3374
1573-8795
language eng
recordid cdi_proquest_journals_2213194663
source SpringerLink Journals - AutoHoldings
subjects Bifurcations
Differential equations
Geodesy
Mathematics
Mathematics and Statistics
title On geodesic bifurcations of product spaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T05%3A22%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20geodesic%20bifurcations%20of%20product%20spaces&rft.jtitle=Journal%20of%20mathematical%20sciences%20(New%20York,%20N.Y.)&rft.au=R%C3%BDparov%C3%A1,%20Lenka&rft.date=2019-05-04&rft.volume=239&rft.issue=1&rft.spage=86&rft.epage=91&rft.pages=86-91&rft.issn=1072-3374&rft.eissn=1573-8795&rft_id=info:doi/10.1007/s10958-019-04290-1&rft_dat=%3Cgale_proqu%3EA600035457%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2213194663&rft_id=info:pmid/&rft_galeid=A600035457&rfr_iscdi=true