On geodesic bifurcations of product spaces
The bifurcation is described as a situation where there exist at least two different geodesics going through the given point in the given direction. In the previous works, the examples of local and closed bifurcations are constructed. This paper is devoted to the further study of these bifurcations....
Gespeichert in:
Veröffentlicht in: | Journal of mathematical sciences (New York, N.Y.) N.Y.), 2019-05, Vol.239 (1), p.86-91 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 91 |
---|---|
container_issue | 1 |
container_start_page | 86 |
container_title | Journal of mathematical sciences (New York, N.Y.) |
container_volume | 239 |
creator | Rýparová, Lenka Mikeš, Josef Sabykanov, Almaz |
description | The bifurcation is described as a situation where there exist at least two different geodesics going through the given point in the given direction. In the previous works, the examples of local and closed bifurcations are constructed. This paper is devoted to the further study of these bifurcations. We construct an example of
n
-dimensional (pseudo-) Riemannian and Kählerian spaces which are product ones that admit a local bifurcation of geodesics and also a closed geodesic. |
doi_str_mv | 10.1007/s10958-019-04290-1 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2213194663</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A600035457</galeid><sourcerecordid>A600035457</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4171-299ec7f563f12cc9e7ae53fb71785511d359158d25476be29b1bc7fba6c74be13</originalsourceid><addsrcrecordid>eNp9kV1LwzAUhoMoOKd_wKuCVwqZOUnTNJdj-AWC4Md1SNOTUtnambSg_97ohDEYkouEw_PkcM5LyDmwGTCmriMwLUvKQFOWc80oHJAJSCVoqbQ8TG-mOBVC5cfkJMZ3lqSiFBNy9dRlDfY1xtZlVevH4OzQ9l3Mep-tQ1-Pbsji2jqMp-TI22XEs797St5ub14X9_Tx6e5hMX-kLgcFlGuNTnlZCA_cOY3KohS-UqBKKQFqITXIsuYyV0WFXFdQJb6yhVN5hSCm5GLzb2r_MWIczHs_hi61NJyDAJ0XhdhSjV2iaTvfD8G6VRudmRdpPCHzNP6U0D1Ugx0Gu-w79G0q7_CzPXw6Na5at1e43BESM-Dn0NgxRvPw8rzL8g3rQh9jQG_WoV3Z8GWAmZ8YzSZGk2I0vzGan22IjRQT3DUYttv4x_oGURObAg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2213194663</pqid></control><display><type>article</type><title>On geodesic bifurcations of product spaces</title><source>SpringerLink Journals - AutoHoldings</source><creator>Rýparová, Lenka ; Mikeš, Josef ; Sabykanov, Almaz</creator><creatorcontrib>Rýparová, Lenka ; Mikeš, Josef ; Sabykanov, Almaz</creatorcontrib><description>The bifurcation is described as a situation where there exist at least two different geodesics going through the given point in the given direction. In the previous works, the examples of local and closed bifurcations are constructed. This paper is devoted to the further study of these bifurcations. We construct an example of
n
-dimensional (pseudo-) Riemannian and Kählerian spaces which are product ones that admit a local bifurcation of geodesics and also a closed geodesic.</description><identifier>ISSN: 1072-3374</identifier><identifier>EISSN: 1573-8795</identifier><identifier>DOI: 10.1007/s10958-019-04290-1</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Bifurcations ; Differential equations ; Geodesy ; Mathematics ; Mathematics and Statistics</subject><ispartof>Journal of mathematical sciences (New York, N.Y.), 2019-05, Vol.239 (1), p.86-91</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>COPYRIGHT 2019 Springer</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4171-299ec7f563f12cc9e7ae53fb71785511d359158d25476be29b1bc7fba6c74be13</citedby><cites>FETCH-LOGICAL-c4171-299ec7f563f12cc9e7ae53fb71785511d359158d25476be29b1bc7fba6c74be13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10958-019-04290-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10958-019-04290-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Rýparová, Lenka</creatorcontrib><creatorcontrib>Mikeš, Josef</creatorcontrib><creatorcontrib>Sabykanov, Almaz</creatorcontrib><title>On geodesic bifurcations of product spaces</title><title>Journal of mathematical sciences (New York, N.Y.)</title><addtitle>J Math Sci</addtitle><description>The bifurcation is described as a situation where there exist at least two different geodesics going through the given point in the given direction. In the previous works, the examples of local and closed bifurcations are constructed. This paper is devoted to the further study of these bifurcations. We construct an example of
n
-dimensional (pseudo-) Riemannian and Kählerian spaces which are product ones that admit a local bifurcation of geodesics and also a closed geodesic.</description><subject>Bifurcations</subject><subject>Differential equations</subject><subject>Geodesy</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>1072-3374</issn><issn>1573-8795</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kV1LwzAUhoMoOKd_wKuCVwqZOUnTNJdj-AWC4Md1SNOTUtnambSg_97ohDEYkouEw_PkcM5LyDmwGTCmriMwLUvKQFOWc80oHJAJSCVoqbQ8TG-mOBVC5cfkJMZ3lqSiFBNy9dRlDfY1xtZlVevH4OzQ9l3Mep-tQ1-Pbsji2jqMp-TI22XEs797St5ub14X9_Tx6e5hMX-kLgcFlGuNTnlZCA_cOY3KohS-UqBKKQFqITXIsuYyV0WFXFdQJb6yhVN5hSCm5GLzb2r_MWIczHs_hi61NJyDAJ0XhdhSjV2iaTvfD8G6VRudmRdpPCHzNP6U0D1Ugx0Gu-w79G0q7_CzPXw6Na5at1e43BESM-Dn0NgxRvPw8rzL8g3rQh9jQG_WoV3Z8GWAmZ8YzSZGk2I0vzGan22IjRQT3DUYttv4x_oGURObAg</recordid><startdate>20190504</startdate><enddate>20190504</enddate><creator>Rýparová, Lenka</creator><creator>Mikeš, Josef</creator><creator>Sabykanov, Almaz</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope></search><sort><creationdate>20190504</creationdate><title>On geodesic bifurcations of product spaces</title><author>Rýparová, Lenka ; Mikeš, Josef ; Sabykanov, Almaz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4171-299ec7f563f12cc9e7ae53fb71785511d359158d25476be29b1bc7fba6c74be13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Bifurcations</topic><topic>Differential equations</topic><topic>Geodesy</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rýparová, Lenka</creatorcontrib><creatorcontrib>Mikeš, Josef</creatorcontrib><creatorcontrib>Sabykanov, Almaz</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rýparová, Lenka</au><au>Mikeš, Josef</au><au>Sabykanov, Almaz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On geodesic bifurcations of product spaces</atitle><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle><stitle>J Math Sci</stitle><date>2019-05-04</date><risdate>2019</risdate><volume>239</volume><issue>1</issue><spage>86</spage><epage>91</epage><pages>86-91</pages><issn>1072-3374</issn><eissn>1573-8795</eissn><abstract>The bifurcation is described as a situation where there exist at least two different geodesics going through the given point in the given direction. In the previous works, the examples of local and closed bifurcations are constructed. This paper is devoted to the further study of these bifurcations. We construct an example of
n
-dimensional (pseudo-) Riemannian and Kählerian spaces which are product ones that admit a local bifurcation of geodesics and also a closed geodesic.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10958-019-04290-1</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1072-3374 |
ispartof | Journal of mathematical sciences (New York, N.Y.), 2019-05, Vol.239 (1), p.86-91 |
issn | 1072-3374 1573-8795 |
language | eng |
recordid | cdi_proquest_journals_2213194663 |
source | SpringerLink Journals - AutoHoldings |
subjects | Bifurcations Differential equations Geodesy Mathematics Mathematics and Statistics |
title | On geodesic bifurcations of product spaces |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T05%3A22%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20geodesic%20bifurcations%20of%20product%20spaces&rft.jtitle=Journal%20of%20mathematical%20sciences%20(New%20York,%20N.Y.)&rft.au=R%C3%BDparov%C3%A1,%20Lenka&rft.date=2019-05-04&rft.volume=239&rft.issue=1&rft.spage=86&rft.epage=91&rft.pages=86-91&rft.issn=1072-3374&rft.eissn=1573-8795&rft_id=info:doi/10.1007/s10958-019-04290-1&rft_dat=%3Cgale_proqu%3EA600035457%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2213194663&rft_id=info:pmid/&rft_galeid=A600035457&rfr_iscdi=true |