Affine spaces of strong linearizations for rational matrices and the recovery of eigenvectors and minimal bases

The main aim of this paper is two-fold. First, to define and analyze two affine spaces of matrix pencils associated with a realization of an n×n rational matrix G(λ) and show that almost all of these pencils are strong linearizations of G(λ). Second, to describe the recovery of eigenvectors, minimal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Linear algebra and its applications 2019-05, Vol.569, p.335-368
Hauptverfasser: Das, Ranjan Kumar, Alam, Rafikul
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 368
container_issue
container_start_page 335
container_title Linear algebra and its applications
container_volume 569
creator Das, Ranjan Kumar
Alam, Rafikul
description The main aim of this paper is two-fold. First, to define and analyze two affine spaces of matrix pencils associated with a realization of an n×n rational matrix G(λ) and show that almost all of these pencils are strong linearizations of G(λ). Second, to describe the recovery of eigenvectors, minimal bases and minimal indices of G(λ) from those of the strong linearizations of G(λ). The affine spaces of pencils are constructed from the vector spaces of linearizations of matrix polynomials defined and analyzed by Mackey et al. in [SIAM J. Matrix Anal. Appl., 28 (2006), pp. 971–1004]. We show that eigenvectors, minimal bases and minimal indices of G(λ) can be easily recovered from those of the strong linearizations of G(λ). In particular, we construct a symmetric strong linearization of G(λ) when G(λ) is regular and symmetric. We also describe the recovery of pole-zero structure of G(λ) at infinity from the pole-zero structure at infinity of a strong linearization of G(λ).
doi_str_mv 10.1016/j.laa.2019.02.001
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2213149946</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0024379519300497</els_id><sourcerecordid>2213149946</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-df21c9d769ddeab3caa5f13c3d2678728d75330574aafbe00931b61139ddf6c13</originalsourceid><addsrcrecordid>eNp9kEtLAzEURoMoWKs_wF3A9Yz3JvPEVRFfUHCj65AmNzWlndRkLNRfb2pdu0oI54SPw9g1QomAze2qXGtdCsC-BFEC4AmbYNfKAru6OWUTAFEVsu3rc3aR0goAqhbEhIWZc34gnrbaUOLB8TTGMCz5Or_q6L_16MOQuAuRx9-7XvONHqM_4HqwfPwgHsmEHcX9wSe_pGFHZgzxCGz84DfZWuhE6ZKdOb1OdPV3Ttn748Pb_XMxf316uZ_NCyObbiysE2h62za9taQX0mhdO5RGWtG0XSs629ZSQt1WWrsFAfQSFw2izLxrDMopuzn-u43h84vSqFbhK-bxSQmBEqu-r5pM4ZEyMaQUyaltzFvjXiGoQ1e1UrmrOnRVIFTump27o0N5_s5TVMl4GgxZnzOMygb_j_0DZTyCBg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2213149946</pqid></control><display><type>article</type><title>Affine spaces of strong linearizations for rational matrices and the recovery of eigenvectors and minimal bases</title><source>Elsevier ScienceDirect Journals Complete</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Das, Ranjan Kumar ; Alam, Rafikul</creator><creatorcontrib>Das, Ranjan Kumar ; Alam, Rafikul</creatorcontrib><description>The main aim of this paper is two-fold. First, to define and analyze two affine spaces of matrix pencils associated with a realization of an n×n rational matrix G(λ) and show that almost all of these pencils are strong linearizations of G(λ). Second, to describe the recovery of eigenvectors, minimal bases and minimal indices of G(λ) from those of the strong linearizations of G(λ). The affine spaces of pencils are constructed from the vector spaces of linearizations of matrix polynomials defined and analyzed by Mackey et al. in [SIAM J. Matrix Anal. Appl., 28 (2006), pp. 971–1004]. We show that eigenvectors, minimal bases and minimal indices of G(λ) can be easily recovered from those of the strong linearizations of G(λ). In particular, we construct a symmetric strong linearization of G(λ) when G(λ) is regular and symmetric. We also describe the recovery of pole-zero structure of G(λ) at infinity from the pole-zero structure at infinity of a strong linearization of G(λ).</description><identifier>ISSN: 0024-3795</identifier><identifier>EISSN: 1873-1856</identifier><identifier>DOI: 10.1016/j.laa.2019.02.001</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Construction ; Eigenvalue ; Eigenvector ; Eigenvectors ; Infinity ; Linear algebra ; Linearization ; Mathematical analysis ; Matrix algebra ; Matrix methods ; Matrix pencil ; Matrix polynomial ; Minimal realization ; Pencils ; Polynomials ; Rational matrices ; Recovery ; Strong linearization ; System matrix ; Vector spaces</subject><ispartof>Linear algebra and its applications, 2019-05, Vol.569, p.335-368</ispartof><rights>2019 Elsevier Inc.</rights><rights>Copyright American Elsevier Company, Inc. May 15, 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-df21c9d769ddeab3caa5f13c3d2678728d75330574aafbe00931b61139ddf6c13</citedby><cites>FETCH-LOGICAL-c368t-df21c9d769ddeab3caa5f13c3d2678728d75330574aafbe00931b61139ddf6c13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.laa.2019.02.001$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Das, Ranjan Kumar</creatorcontrib><creatorcontrib>Alam, Rafikul</creatorcontrib><title>Affine spaces of strong linearizations for rational matrices and the recovery of eigenvectors and minimal bases</title><title>Linear algebra and its applications</title><description>The main aim of this paper is two-fold. First, to define and analyze two affine spaces of matrix pencils associated with a realization of an n×n rational matrix G(λ) and show that almost all of these pencils are strong linearizations of G(λ). Second, to describe the recovery of eigenvectors, minimal bases and minimal indices of G(λ) from those of the strong linearizations of G(λ). The affine spaces of pencils are constructed from the vector spaces of linearizations of matrix polynomials defined and analyzed by Mackey et al. in [SIAM J. Matrix Anal. Appl., 28 (2006), pp. 971–1004]. We show that eigenvectors, minimal bases and minimal indices of G(λ) can be easily recovered from those of the strong linearizations of G(λ). In particular, we construct a symmetric strong linearization of G(λ) when G(λ) is regular and symmetric. We also describe the recovery of pole-zero structure of G(λ) at infinity from the pole-zero structure at infinity of a strong linearization of G(λ).</description><subject>Construction</subject><subject>Eigenvalue</subject><subject>Eigenvector</subject><subject>Eigenvectors</subject><subject>Infinity</subject><subject>Linear algebra</subject><subject>Linearization</subject><subject>Mathematical analysis</subject><subject>Matrix algebra</subject><subject>Matrix methods</subject><subject>Matrix pencil</subject><subject>Matrix polynomial</subject><subject>Minimal realization</subject><subject>Pencils</subject><subject>Polynomials</subject><subject>Rational matrices</subject><subject>Recovery</subject><subject>Strong linearization</subject><subject>System matrix</subject><subject>Vector spaces</subject><issn>0024-3795</issn><issn>1873-1856</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEURoMoWKs_wF3A9Yz3JvPEVRFfUHCj65AmNzWlndRkLNRfb2pdu0oI54SPw9g1QomAze2qXGtdCsC-BFEC4AmbYNfKAru6OWUTAFEVsu3rc3aR0goAqhbEhIWZc34gnrbaUOLB8TTGMCz5Or_q6L_16MOQuAuRx9-7XvONHqM_4HqwfPwgHsmEHcX9wSe_pGFHZgzxCGz84DfZWuhE6ZKdOb1OdPV3Ttn748Pb_XMxf316uZ_NCyObbiysE2h62za9taQX0mhdO5RGWtG0XSs629ZSQt1WWrsFAfQSFw2izLxrDMopuzn-u43h84vSqFbhK-bxSQmBEqu-r5pM4ZEyMaQUyaltzFvjXiGoQ1e1UrmrOnRVIFTump27o0N5_s5TVMl4GgxZnzOMygb_j_0DZTyCBg</recordid><startdate>20190515</startdate><enddate>20190515</enddate><creator>Das, Ranjan Kumar</creator><creator>Alam, Rafikul</creator><general>Elsevier Inc</general><general>American Elsevier Company, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20190515</creationdate><title>Affine spaces of strong linearizations for rational matrices and the recovery of eigenvectors and minimal bases</title><author>Das, Ranjan Kumar ; Alam, Rafikul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-df21c9d769ddeab3caa5f13c3d2678728d75330574aafbe00931b61139ddf6c13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Construction</topic><topic>Eigenvalue</topic><topic>Eigenvector</topic><topic>Eigenvectors</topic><topic>Infinity</topic><topic>Linear algebra</topic><topic>Linearization</topic><topic>Mathematical analysis</topic><topic>Matrix algebra</topic><topic>Matrix methods</topic><topic>Matrix pencil</topic><topic>Matrix polynomial</topic><topic>Minimal realization</topic><topic>Pencils</topic><topic>Polynomials</topic><topic>Rational matrices</topic><topic>Recovery</topic><topic>Strong linearization</topic><topic>System matrix</topic><topic>Vector spaces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Das, Ranjan Kumar</creatorcontrib><creatorcontrib>Alam, Rafikul</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Linear algebra and its applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Das, Ranjan Kumar</au><au>Alam, Rafikul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Affine spaces of strong linearizations for rational matrices and the recovery of eigenvectors and minimal bases</atitle><jtitle>Linear algebra and its applications</jtitle><date>2019-05-15</date><risdate>2019</risdate><volume>569</volume><spage>335</spage><epage>368</epage><pages>335-368</pages><issn>0024-3795</issn><eissn>1873-1856</eissn><abstract>The main aim of this paper is two-fold. First, to define and analyze two affine spaces of matrix pencils associated with a realization of an n×n rational matrix G(λ) and show that almost all of these pencils are strong linearizations of G(λ). Second, to describe the recovery of eigenvectors, minimal bases and minimal indices of G(λ) from those of the strong linearizations of G(λ). The affine spaces of pencils are constructed from the vector spaces of linearizations of matrix polynomials defined and analyzed by Mackey et al. in [SIAM J. Matrix Anal. Appl., 28 (2006), pp. 971–1004]. We show that eigenvectors, minimal bases and minimal indices of G(λ) can be easily recovered from those of the strong linearizations of G(λ). In particular, we construct a symmetric strong linearization of G(λ) when G(λ) is regular and symmetric. We also describe the recovery of pole-zero structure of G(λ) at infinity from the pole-zero structure at infinity of a strong linearization of G(λ).</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/j.laa.2019.02.001</doi><tpages>34</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0024-3795
ispartof Linear algebra and its applications, 2019-05, Vol.569, p.335-368
issn 0024-3795
1873-1856
language eng
recordid cdi_proquest_journals_2213149946
source Elsevier ScienceDirect Journals Complete; EZB-FREE-00999 freely available EZB journals
subjects Construction
Eigenvalue
Eigenvector
Eigenvectors
Infinity
Linear algebra
Linearization
Mathematical analysis
Matrix algebra
Matrix methods
Matrix pencil
Matrix polynomial
Minimal realization
Pencils
Polynomials
Rational matrices
Recovery
Strong linearization
System matrix
Vector spaces
title Affine spaces of strong linearizations for rational matrices and the recovery of eigenvectors and minimal bases
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T14%3A57%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Affine%20spaces%20of%20strong%20linearizations%20for%20rational%20matrices%20and%20the%20recovery%20of%20eigenvectors%20and%20minimal%20bases&rft.jtitle=Linear%20algebra%20and%20its%20applications&rft.au=Das,%20Ranjan%20Kumar&rft.date=2019-05-15&rft.volume=569&rft.spage=335&rft.epage=368&rft.pages=335-368&rft.issn=0024-3795&rft.eissn=1873-1856&rft_id=info:doi/10.1016/j.laa.2019.02.001&rft_dat=%3Cproquest_cross%3E2213149946%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2213149946&rft_id=info:pmid/&rft_els_id=S0024379519300497&rfr_iscdi=true