Water Availability Assessment of Shale Gas Production in the Weiyuan Play, China

Innovations and improvements in hydraulic fracturing and horizontal well technologies have contributed to the success of the shale gas industry; however, the industry is also challenged by freshwater use and environmental health issues, and this makes precise quantification of water consumption impo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sustainability 2019-02, Vol.11 (3), p.940
Hauptverfasser: Wu, Xia, Xia, Jun, Guan, Baoshan, Yan, Xinming, Zou, Lei, Liu, Ping, Yang, Lifeng, Hong, Si, Hu, Sheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Innovations and improvements in hydraulic fracturing and horizontal well technologies have contributed to the success of the shale gas industry; however, the industry is also challenged by freshwater use and environmental health issues, and this makes precise quantification of water consumption important. The objective of this study was to better understand water sustainability and availability of the projected shale gas from 2018 to 2030 in the Weiyuan play, China. The water footprint framework was used to quantify the potential water use and environmental impacts on different time scales. The results showed that the water use per well ranged from 11,300 to 60,660 m3, with a median of 36,014 m3, totaling ~ 3.44 Mm3 for 97 wells. Yearly evaluation results showed that the gray water footprint was the main contributor and accounted for 83.82% to 96.76%, which was dependent on the different treatment percentage scenario. The monthly environmental impact results indicated that the annual streamflow statistics were more likely to prevent water withdrawal. Water quality issues may be alleviated through recycling and retreatment measures that improve current waste water management strategies. Resource regulators should manage their water resources by matching water demand to water availability or replenishment.
ISSN:2071-1050
2071-1050
DOI:10.3390/su11030940