Stability of prostaglandin E2 (PGE2) embedded in poly-d,l-lactide-co-glycolide microspheres: a pre-conditioning approach for tissue engineering applications
Prostaglandin E 2 (PGE 2 ) is involved in angiogenesis, bone repair and cartilage metabolism. Thus, PGE 2 might represent a suitable signaling molecule in different tissue engineering applications. PGE 2 also has a short half-life time. Its incorporation into poly- d , l -lactide-co-glycolide (PLGA)...
Gespeichert in:
Veröffentlicht in: | Journal of materials science. Materials in medicine 2009-06, Vol.20 (6), p.1357-1365 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1365 |
---|---|
container_issue | 6 |
container_start_page | 1357 |
container_title | Journal of materials science. Materials in medicine |
container_volume | 20 |
creator | Watzer, Bernhard Zehbe, Rolf Halstenberg, Sven James Kirkpatrick, C. Brochhausen, Christoph |
description | Prostaglandin E
2
(PGE
2
) is involved in angiogenesis, bone repair and cartilage metabolism. Thus, PGE
2
might represent a suitable signaling molecule in different tissue engineering applications. PGE
2
also has a short half-life time. Its incorporation into poly-
d
,
l
-lactide-co-glycolide (PLGA) microspheres was demonstrated in a previous study. However, the stability of bioactive PGE
2
in these microspheres is unknown. With an adjusted mass spectrometry assay we investigated the amount of incorporated PGE
2
and the stability of PGE
2
in conventional cell culture medium and in PLGA microspheres. The stability of PGE
2
was closely pH dependent. Strong acidic or basic environments reduced the half-life from 300 h (pH 2.6–4.0) to below 50 h at pH 2.0 or pH 8.8. The half-life of PGE
2
incorporated into poly-
d
,
l
-lactide-co-glycolide increased drastically to 70 days at 37°C and to 300 days at 8°C. Analysis with scanning electron microscopy (SEM) and atomic force microscopy (AFM) demonstrated a distinct nanostructure of the polymeric phase and both nano- and microporosity. |
doi_str_mv | 10.1007/s10856-008-3678-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_221277636</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1895553891</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2969-3e7e63d57636679ae6337e220b429299b92f04d8581aa7f3149590a59bfc30b43</originalsourceid><addsrcrecordid>eNp1kc1KAzEUhYMoWKsP4C64UjCan8lk4k5KrUJBQV2HzMydNiWdGZPpou_iw5qhgitX4SbnfDeHg9Alo3eMUnUfGS1kTigtiMhVQfQRmjCpBMkKURyjCdVSkUwKeorOYtxQSjMt5QR9vw-2dN4Ne9w1uA9dHOzK27Z2LZ5zfP22mPMbDNsS6hpqnG77zu9JfeuJt9XgaiBVR1Z-X3U-DXjrqsTo1xAgPmCbiKMg4QbXta5dYdunJbZa46YLeHAx7gBDu3ItQPh9966yozyeo5PG-ggXv-cUfT7NP2bPZPm6eJk9LknFda6JAAW5qKXKRZ4rbdMgFHBOy4xrrnWpeUOzupAFs1Y1gqXomlqpy6YSSSSm6OrATV_72kEczKbbhTatNJwzrkZwErGDaAwYAzSmD25rw94wasYOzKEDkzowYwdGJw8_eGI_hoPwB_7f9AOzK4ro</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>221277636</pqid></control><display><type>article</type><title>Stability of prostaglandin E2 (PGE2) embedded in poly-d,l-lactide-co-glycolide microspheres: a pre-conditioning approach for tissue engineering applications</title><source>SpringerNature Journals</source><creator>Watzer, Bernhard ; Zehbe, Rolf ; Halstenberg, Sven ; James Kirkpatrick, C. ; Brochhausen, Christoph</creator><creatorcontrib>Watzer, Bernhard ; Zehbe, Rolf ; Halstenberg, Sven ; James Kirkpatrick, C. ; Brochhausen, Christoph</creatorcontrib><description>Prostaglandin E
2
(PGE
2
) is involved in angiogenesis, bone repair and cartilage metabolism. Thus, PGE
2
might represent a suitable signaling molecule in different tissue engineering applications. PGE
2
also has a short half-life time. Its incorporation into poly-
d
,
l
-lactide-co-glycolide (PLGA) microspheres was demonstrated in a previous study. However, the stability of bioactive PGE
2
in these microspheres is unknown. With an adjusted mass spectrometry assay we investigated the amount of incorporated PGE
2
and the stability of PGE
2
in conventional cell culture medium and in PLGA microspheres. The stability of PGE
2
was closely pH dependent. Strong acidic or basic environments reduced the half-life from 300 h (pH 2.6–4.0) to below 50 h at pH 2.0 or pH 8.8. The half-life of PGE
2
incorporated into poly-
d
,
l
-lactide-co-glycolide increased drastically to 70 days at 37°C and to 300 days at 8°C. Analysis with scanning electron microscopy (SEM) and atomic force microscopy (AFM) demonstrated a distinct nanostructure of the polymeric phase and both nano- and microporosity.</description><identifier>ISSN: 0957-4530</identifier><identifier>EISSN: 1573-4838</identifier><identifier>DOI: 10.1007/s10856-008-3678-9</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Biomaterials ; Biomedical engineering ; Biomedical Engineering and Bioengineering ; Biomedical materials ; Ceramics ; Chemistry and Materials Science ; Composites ; Glass ; Materials Science ; Molecular biology ; Natural Materials ; Polymer Sciences ; Regenerative Medicine/Tissue Engineering ; Surfaces and Interfaces ; Thin Films ; Tissue engineering</subject><ispartof>Journal of materials science. Materials in medicine, 2009-06, Vol.20 (6), p.1357-1365</ispartof><rights>Springer Science+Business Media, LLC 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2969-3e7e63d57636679ae6337e220b429299b92f04d8581aa7f3149590a59bfc30b43</citedby><cites>FETCH-LOGICAL-c2969-3e7e63d57636679ae6337e220b429299b92f04d8581aa7f3149590a59bfc30b43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10856-008-3678-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10856-008-3678-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Watzer, Bernhard</creatorcontrib><creatorcontrib>Zehbe, Rolf</creatorcontrib><creatorcontrib>Halstenberg, Sven</creatorcontrib><creatorcontrib>James Kirkpatrick, C.</creatorcontrib><creatorcontrib>Brochhausen, Christoph</creatorcontrib><title>Stability of prostaglandin E2 (PGE2) embedded in poly-d,l-lactide-co-glycolide microspheres: a pre-conditioning approach for tissue engineering applications</title><title>Journal of materials science. Materials in medicine</title><addtitle>J Mater Sci: Mater Med</addtitle><description>Prostaglandin E
2
(PGE
2
) is involved in angiogenesis, bone repair and cartilage metabolism. Thus, PGE
2
might represent a suitable signaling molecule in different tissue engineering applications. PGE
2
also has a short half-life time. Its incorporation into poly-
d
,
l
-lactide-co-glycolide (PLGA) microspheres was demonstrated in a previous study. However, the stability of bioactive PGE
2
in these microspheres is unknown. With an adjusted mass spectrometry assay we investigated the amount of incorporated PGE
2
and the stability of PGE
2
in conventional cell culture medium and in PLGA microspheres. The stability of PGE
2
was closely pH dependent. Strong acidic or basic environments reduced the half-life from 300 h (pH 2.6–4.0) to below 50 h at pH 2.0 or pH 8.8. The half-life of PGE
2
incorporated into poly-
d
,
l
-lactide-co-glycolide increased drastically to 70 days at 37°C and to 300 days at 8°C. Analysis with scanning electron microscopy (SEM) and atomic force microscopy (AFM) demonstrated a distinct nanostructure of the polymeric phase and both nano- and microporosity.</description><subject>Biomaterials</subject><subject>Biomedical engineering</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Biomedical materials</subject><subject>Ceramics</subject><subject>Chemistry and Materials Science</subject><subject>Composites</subject><subject>Glass</subject><subject>Materials Science</subject><subject>Molecular biology</subject><subject>Natural Materials</subject><subject>Polymer Sciences</subject><subject>Regenerative Medicine/Tissue Engineering</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><subject>Tissue engineering</subject><issn>0957-4530</issn><issn>1573-4838</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kc1KAzEUhYMoWKsP4C64UjCan8lk4k5KrUJBQV2HzMydNiWdGZPpou_iw5qhgitX4SbnfDeHg9Alo3eMUnUfGS1kTigtiMhVQfQRmjCpBMkKURyjCdVSkUwKeorOYtxQSjMt5QR9vw-2dN4Ne9w1uA9dHOzK27Z2LZ5zfP22mPMbDNsS6hpqnG77zu9JfeuJt9XgaiBVR1Z-X3U-DXjrqsTo1xAgPmCbiKMg4QbXta5dYdunJbZa46YLeHAx7gBDu3ItQPh9966yozyeo5PG-ggXv-cUfT7NP2bPZPm6eJk9LknFda6JAAW5qKXKRZ4rbdMgFHBOy4xrrnWpeUOzupAFs1Y1gqXomlqpy6YSSSSm6OrATV_72kEczKbbhTatNJwzrkZwErGDaAwYAzSmD25rw94wasYOzKEDkzowYwdGJw8_eGI_hoPwB_7f9AOzK4ro</recordid><startdate>200906</startdate><enddate>200906</enddate><creator>Watzer, Bernhard</creator><creator>Zehbe, Rolf</creator><creator>Halstenberg, Sven</creator><creator>James Kirkpatrick, C.</creator><creator>Brochhausen, Christoph</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KB.</scope><scope>KR7</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>S0W</scope></search><sort><creationdate>200906</creationdate><title>Stability of prostaglandin E2 (PGE2) embedded in poly-d,l-lactide-co-glycolide microspheres: a pre-conditioning approach for tissue engineering applications</title><author>Watzer, Bernhard ; Zehbe, Rolf ; Halstenberg, Sven ; James Kirkpatrick, C. ; Brochhausen, Christoph</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2969-3e7e63d57636679ae6337e220b429299b92f04d8581aa7f3149590a59bfc30b43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Biomaterials</topic><topic>Biomedical engineering</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Biomedical materials</topic><topic>Ceramics</topic><topic>Chemistry and Materials Science</topic><topic>Composites</topic><topic>Glass</topic><topic>Materials Science</topic><topic>Molecular biology</topic><topic>Natural Materials</topic><topic>Polymer Sciences</topic><topic>Regenerative Medicine/Tissue Engineering</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><topic>Tissue engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Watzer, Bernhard</creatorcontrib><creatorcontrib>Zehbe, Rolf</creatorcontrib><creatorcontrib>Halstenberg, Sven</creatorcontrib><creatorcontrib>James Kirkpatrick, C.</creatorcontrib><creatorcontrib>Brochhausen, Christoph</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Journal of materials science. Materials in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Watzer, Bernhard</au><au>Zehbe, Rolf</au><au>Halstenberg, Sven</au><au>James Kirkpatrick, C.</au><au>Brochhausen, Christoph</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stability of prostaglandin E2 (PGE2) embedded in poly-d,l-lactide-co-glycolide microspheres: a pre-conditioning approach for tissue engineering applications</atitle><jtitle>Journal of materials science. Materials in medicine</jtitle><stitle>J Mater Sci: Mater Med</stitle><date>2009-06</date><risdate>2009</risdate><volume>20</volume><issue>6</issue><spage>1357</spage><epage>1365</epage><pages>1357-1365</pages><issn>0957-4530</issn><eissn>1573-4838</eissn><abstract>Prostaglandin E
2
(PGE
2
) is involved in angiogenesis, bone repair and cartilage metabolism. Thus, PGE
2
might represent a suitable signaling molecule in different tissue engineering applications. PGE
2
also has a short half-life time. Its incorporation into poly-
d
,
l
-lactide-co-glycolide (PLGA) microspheres was demonstrated in a previous study. However, the stability of bioactive PGE
2
in these microspheres is unknown. With an adjusted mass spectrometry assay we investigated the amount of incorporated PGE
2
and the stability of PGE
2
in conventional cell culture medium and in PLGA microspheres. The stability of PGE
2
was closely pH dependent. Strong acidic or basic environments reduced the half-life from 300 h (pH 2.6–4.0) to below 50 h at pH 2.0 or pH 8.8. The half-life of PGE
2
incorporated into poly-
d
,
l
-lactide-co-glycolide increased drastically to 70 days at 37°C and to 300 days at 8°C. Analysis with scanning electron microscopy (SEM) and atomic force microscopy (AFM) demonstrated a distinct nanostructure of the polymeric phase and both nano- and microporosity.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10856-008-3678-9</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0957-4530 |
ispartof | Journal of materials science. Materials in medicine, 2009-06, Vol.20 (6), p.1357-1365 |
issn | 0957-4530 1573-4838 |
language | eng |
recordid | cdi_proquest_journals_221277636 |
source | SpringerNature Journals |
subjects | Biomaterials Biomedical engineering Biomedical Engineering and Bioengineering Biomedical materials Ceramics Chemistry and Materials Science Composites Glass Materials Science Molecular biology Natural Materials Polymer Sciences Regenerative Medicine/Tissue Engineering Surfaces and Interfaces Thin Films Tissue engineering |
title | Stability of prostaglandin E2 (PGE2) embedded in poly-d,l-lactide-co-glycolide microspheres: a pre-conditioning approach for tissue engineering applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T02%3A15%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stability%20of%20prostaglandin%20E2%20(PGE2)%20embedded%20in%20poly-d,l-lactide-co-glycolide%20microspheres:%20a%20pre-conditioning%20approach%20for%20tissue%20engineering%20applications&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20medicine&rft.au=Watzer,%20Bernhard&rft.date=2009-06&rft.volume=20&rft.issue=6&rft.spage=1357&rft.epage=1365&rft.pages=1357-1365&rft.issn=0957-4530&rft.eissn=1573-4838&rft_id=info:doi/10.1007/s10856-008-3678-9&rft_dat=%3Cproquest_cross%3E1895553891%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=221277636&rft_id=info:pmid/&rfr_iscdi=true |