Stability of prostaglandin E2 (PGE2) embedded in poly-d,l-lactide-co-glycolide microspheres: a pre-conditioning approach for tissue engineering applications

Prostaglandin E 2 (PGE 2 ) is involved in angiogenesis, bone repair and cartilage metabolism. Thus, PGE 2 might represent a suitable signaling molecule in different tissue engineering applications. PGE 2 also has a short half-life time. Its incorporation into poly- d , l -lactide-co-glycolide (PLGA)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science. Materials in medicine 2009-06, Vol.20 (6), p.1357-1365
Hauptverfasser: Watzer, Bernhard, Zehbe, Rolf, Halstenberg, Sven, James Kirkpatrick, C., Brochhausen, Christoph
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1365
container_issue 6
container_start_page 1357
container_title Journal of materials science. Materials in medicine
container_volume 20
creator Watzer, Bernhard
Zehbe, Rolf
Halstenberg, Sven
James Kirkpatrick, C.
Brochhausen, Christoph
description Prostaglandin E 2 (PGE 2 ) is involved in angiogenesis, bone repair and cartilage metabolism. Thus, PGE 2 might represent a suitable signaling molecule in different tissue engineering applications. PGE 2 also has a short half-life time. Its incorporation into poly- d , l -lactide-co-glycolide (PLGA) microspheres was demonstrated in a previous study. However, the stability of bioactive PGE 2 in these microspheres is unknown. With an adjusted mass spectrometry assay we investigated the amount of incorporated PGE 2 and the stability of PGE 2 in conventional cell culture medium and in PLGA microspheres. The stability of PGE 2 was closely pH dependent. Strong acidic or basic environments reduced the half-life from 300 h (pH 2.6–4.0) to below 50 h at pH 2.0 or pH 8.8. The half-life of PGE 2 incorporated into poly- d , l -lactide-co-glycolide increased drastically to 70 days at 37°C and to 300 days at 8°C. Analysis with scanning electron microscopy (SEM) and atomic force microscopy (AFM) demonstrated a distinct nanostructure of the polymeric phase and both nano- and microporosity.
doi_str_mv 10.1007/s10856-008-3678-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_221277636</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1895553891</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2969-3e7e63d57636679ae6337e220b429299b92f04d8581aa7f3149590a59bfc30b43</originalsourceid><addsrcrecordid>eNp1kc1KAzEUhYMoWKsP4C64UjCan8lk4k5KrUJBQV2HzMydNiWdGZPpou_iw5qhgitX4SbnfDeHg9Alo3eMUnUfGS1kTigtiMhVQfQRmjCpBMkKURyjCdVSkUwKeorOYtxQSjMt5QR9vw-2dN4Ne9w1uA9dHOzK27Z2LZ5zfP22mPMbDNsS6hpqnG77zu9JfeuJt9XgaiBVR1Z-X3U-DXjrqsTo1xAgPmCbiKMg4QbXta5dYdunJbZa46YLeHAx7gBDu3ItQPh9966yozyeo5PG-ggXv-cUfT7NP2bPZPm6eJk9LknFda6JAAW5qKXKRZ4rbdMgFHBOy4xrrnWpeUOzupAFs1Y1gqXomlqpy6YSSSSm6OrATV_72kEczKbbhTatNJwzrkZwErGDaAwYAzSmD25rw94wasYOzKEDkzowYwdGJw8_eGI_hoPwB_7f9AOzK4ro</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>221277636</pqid></control><display><type>article</type><title>Stability of prostaglandin E2 (PGE2) embedded in poly-d,l-lactide-co-glycolide microspheres: a pre-conditioning approach for tissue engineering applications</title><source>SpringerNature Journals</source><creator>Watzer, Bernhard ; Zehbe, Rolf ; Halstenberg, Sven ; James Kirkpatrick, C. ; Brochhausen, Christoph</creator><creatorcontrib>Watzer, Bernhard ; Zehbe, Rolf ; Halstenberg, Sven ; James Kirkpatrick, C. ; Brochhausen, Christoph</creatorcontrib><description>Prostaglandin E 2 (PGE 2 ) is involved in angiogenesis, bone repair and cartilage metabolism. Thus, PGE 2 might represent a suitable signaling molecule in different tissue engineering applications. PGE 2 also has a short half-life time. Its incorporation into poly- d , l -lactide-co-glycolide (PLGA) microspheres was demonstrated in a previous study. However, the stability of bioactive PGE 2 in these microspheres is unknown. With an adjusted mass spectrometry assay we investigated the amount of incorporated PGE 2 and the stability of PGE 2 in conventional cell culture medium and in PLGA microspheres. The stability of PGE 2 was closely pH dependent. Strong acidic or basic environments reduced the half-life from 300 h (pH 2.6–4.0) to below 50 h at pH 2.0 or pH 8.8. The half-life of PGE 2 incorporated into poly- d , l -lactide-co-glycolide increased drastically to 70 days at 37°C and to 300 days at 8°C. Analysis with scanning electron microscopy (SEM) and atomic force microscopy (AFM) demonstrated a distinct nanostructure of the polymeric phase and both nano- and microporosity.</description><identifier>ISSN: 0957-4530</identifier><identifier>EISSN: 1573-4838</identifier><identifier>DOI: 10.1007/s10856-008-3678-9</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Biomaterials ; Biomedical engineering ; Biomedical Engineering and Bioengineering ; Biomedical materials ; Ceramics ; Chemistry and Materials Science ; Composites ; Glass ; Materials Science ; Molecular biology ; Natural Materials ; Polymer Sciences ; Regenerative Medicine/Tissue Engineering ; Surfaces and Interfaces ; Thin Films ; Tissue engineering</subject><ispartof>Journal of materials science. Materials in medicine, 2009-06, Vol.20 (6), p.1357-1365</ispartof><rights>Springer Science+Business Media, LLC 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2969-3e7e63d57636679ae6337e220b429299b92f04d8581aa7f3149590a59bfc30b43</citedby><cites>FETCH-LOGICAL-c2969-3e7e63d57636679ae6337e220b429299b92f04d8581aa7f3149590a59bfc30b43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10856-008-3678-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10856-008-3678-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Watzer, Bernhard</creatorcontrib><creatorcontrib>Zehbe, Rolf</creatorcontrib><creatorcontrib>Halstenberg, Sven</creatorcontrib><creatorcontrib>James Kirkpatrick, C.</creatorcontrib><creatorcontrib>Brochhausen, Christoph</creatorcontrib><title>Stability of prostaglandin E2 (PGE2) embedded in poly-d,l-lactide-co-glycolide microspheres: a pre-conditioning approach for tissue engineering applications</title><title>Journal of materials science. Materials in medicine</title><addtitle>J Mater Sci: Mater Med</addtitle><description>Prostaglandin E 2 (PGE 2 ) is involved in angiogenesis, bone repair and cartilage metabolism. Thus, PGE 2 might represent a suitable signaling molecule in different tissue engineering applications. PGE 2 also has a short half-life time. Its incorporation into poly- d , l -lactide-co-glycolide (PLGA) microspheres was demonstrated in a previous study. However, the stability of bioactive PGE 2 in these microspheres is unknown. With an adjusted mass spectrometry assay we investigated the amount of incorporated PGE 2 and the stability of PGE 2 in conventional cell culture medium and in PLGA microspheres. The stability of PGE 2 was closely pH dependent. Strong acidic or basic environments reduced the half-life from 300 h (pH 2.6–4.0) to below 50 h at pH 2.0 or pH 8.8. The half-life of PGE 2 incorporated into poly- d , l -lactide-co-glycolide increased drastically to 70 days at 37°C and to 300 days at 8°C. Analysis with scanning electron microscopy (SEM) and atomic force microscopy (AFM) demonstrated a distinct nanostructure of the polymeric phase and both nano- and microporosity.</description><subject>Biomaterials</subject><subject>Biomedical engineering</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Biomedical materials</subject><subject>Ceramics</subject><subject>Chemistry and Materials Science</subject><subject>Composites</subject><subject>Glass</subject><subject>Materials Science</subject><subject>Molecular biology</subject><subject>Natural Materials</subject><subject>Polymer Sciences</subject><subject>Regenerative Medicine/Tissue Engineering</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><subject>Tissue engineering</subject><issn>0957-4530</issn><issn>1573-4838</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kc1KAzEUhYMoWKsP4C64UjCan8lk4k5KrUJBQV2HzMydNiWdGZPpou_iw5qhgitX4SbnfDeHg9Alo3eMUnUfGS1kTigtiMhVQfQRmjCpBMkKURyjCdVSkUwKeorOYtxQSjMt5QR9vw-2dN4Ne9w1uA9dHOzK27Z2LZ5zfP22mPMbDNsS6hpqnG77zu9JfeuJt9XgaiBVR1Z-X3U-DXjrqsTo1xAgPmCbiKMg4QbXta5dYdunJbZa46YLeHAx7gBDu3ItQPh9966yozyeo5PG-ggXv-cUfT7NP2bPZPm6eJk9LknFda6JAAW5qKXKRZ4rbdMgFHBOy4xrrnWpeUOzupAFs1Y1gqXomlqpy6YSSSSm6OrATV_72kEczKbbhTatNJwzrkZwErGDaAwYAzSmD25rw94wasYOzKEDkzowYwdGJw8_eGI_hoPwB_7f9AOzK4ro</recordid><startdate>200906</startdate><enddate>200906</enddate><creator>Watzer, Bernhard</creator><creator>Zehbe, Rolf</creator><creator>Halstenberg, Sven</creator><creator>James Kirkpatrick, C.</creator><creator>Brochhausen, Christoph</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KB.</scope><scope>KR7</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>S0W</scope></search><sort><creationdate>200906</creationdate><title>Stability of prostaglandin E2 (PGE2) embedded in poly-d,l-lactide-co-glycolide microspheres: a pre-conditioning approach for tissue engineering applications</title><author>Watzer, Bernhard ; Zehbe, Rolf ; Halstenberg, Sven ; James Kirkpatrick, C. ; Brochhausen, Christoph</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2969-3e7e63d57636679ae6337e220b429299b92f04d8581aa7f3149590a59bfc30b43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Biomaterials</topic><topic>Biomedical engineering</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Biomedical materials</topic><topic>Ceramics</topic><topic>Chemistry and Materials Science</topic><topic>Composites</topic><topic>Glass</topic><topic>Materials Science</topic><topic>Molecular biology</topic><topic>Natural Materials</topic><topic>Polymer Sciences</topic><topic>Regenerative Medicine/Tissue Engineering</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><topic>Tissue engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Watzer, Bernhard</creatorcontrib><creatorcontrib>Zehbe, Rolf</creatorcontrib><creatorcontrib>Halstenberg, Sven</creatorcontrib><creatorcontrib>James Kirkpatrick, C.</creatorcontrib><creatorcontrib>Brochhausen, Christoph</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of materials science. Materials in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Watzer, Bernhard</au><au>Zehbe, Rolf</au><au>Halstenberg, Sven</au><au>James Kirkpatrick, C.</au><au>Brochhausen, Christoph</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stability of prostaglandin E2 (PGE2) embedded in poly-d,l-lactide-co-glycolide microspheres: a pre-conditioning approach for tissue engineering applications</atitle><jtitle>Journal of materials science. Materials in medicine</jtitle><stitle>J Mater Sci: Mater Med</stitle><date>2009-06</date><risdate>2009</risdate><volume>20</volume><issue>6</issue><spage>1357</spage><epage>1365</epage><pages>1357-1365</pages><issn>0957-4530</issn><eissn>1573-4838</eissn><abstract>Prostaglandin E 2 (PGE 2 ) is involved in angiogenesis, bone repair and cartilage metabolism. Thus, PGE 2 might represent a suitable signaling molecule in different tissue engineering applications. PGE 2 also has a short half-life time. Its incorporation into poly- d , l -lactide-co-glycolide (PLGA) microspheres was demonstrated in a previous study. However, the stability of bioactive PGE 2 in these microspheres is unknown. With an adjusted mass spectrometry assay we investigated the amount of incorporated PGE 2 and the stability of PGE 2 in conventional cell culture medium and in PLGA microspheres. The stability of PGE 2 was closely pH dependent. Strong acidic or basic environments reduced the half-life from 300 h (pH 2.6–4.0) to below 50 h at pH 2.0 or pH 8.8. The half-life of PGE 2 incorporated into poly- d , l -lactide-co-glycolide increased drastically to 70 days at 37°C and to 300 days at 8°C. Analysis with scanning electron microscopy (SEM) and atomic force microscopy (AFM) demonstrated a distinct nanostructure of the polymeric phase and both nano- and microporosity.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10856-008-3678-9</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0957-4530
ispartof Journal of materials science. Materials in medicine, 2009-06, Vol.20 (6), p.1357-1365
issn 0957-4530
1573-4838
language eng
recordid cdi_proquest_journals_221277636
source SpringerNature Journals
subjects Biomaterials
Biomedical engineering
Biomedical Engineering and Bioengineering
Biomedical materials
Ceramics
Chemistry and Materials Science
Composites
Glass
Materials Science
Molecular biology
Natural Materials
Polymer Sciences
Regenerative Medicine/Tissue Engineering
Surfaces and Interfaces
Thin Films
Tissue engineering
title Stability of prostaglandin E2 (PGE2) embedded in poly-d,l-lactide-co-glycolide microspheres: a pre-conditioning approach for tissue engineering applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T02%3A15%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stability%20of%20prostaglandin%20E2%20(PGE2)%20embedded%20in%20poly-d,l-lactide-co-glycolide%20microspheres:%20a%20pre-conditioning%20approach%20for%20tissue%20engineering%20applications&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20medicine&rft.au=Watzer,%20Bernhard&rft.date=2009-06&rft.volume=20&rft.issue=6&rft.spage=1357&rft.epage=1365&rft.pages=1357-1365&rft.issn=0957-4530&rft.eissn=1573-4838&rft_id=info:doi/10.1007/s10856-008-3678-9&rft_dat=%3Cproquest_cross%3E1895553891%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=221277636&rft_id=info:pmid/&rfr_iscdi=true