Two kinds of generalized connectivity of dual cubes
Let S⊆V(G) and κG(S) denote the maximum number k of edge-disjoint trees T1,T2,…,Tk in G such that V(Ti)⋂V(Tj)=S for any i,j∈{1,2,…,k} and i≠j. For an integer r with 2≤r≤n, the generalizedr-connectivity of a graph G is defined as κr(G)=min{κG(S)|S⊆V(G) and |S|=r}. The r-component connectivity cκr(G)...
Gespeichert in:
Veröffentlicht in: | Discrete Applied Mathematics 2019-03, Vol.257, p.306-316 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 316 |
---|---|
container_issue | |
container_start_page | 306 |
container_title | Discrete Applied Mathematics |
container_volume | 257 |
creator | Zhao, Shu-Li Hao, Rong-Xia Cheng, Eddie |
description | Let S⊆V(G) and κG(S) denote the maximum number k of edge-disjoint trees T1,T2,…,Tk in G such that V(Ti)⋂V(Tj)=S for any i,j∈{1,2,…,k} and i≠j. For an integer r with 2≤r≤n, the generalizedr-connectivity of a graph G is defined as κr(G)=min{κG(S)|S⊆V(G) and |S|=r}. The r-component connectivity cκr(G) of a non-complete graph G is the minimum number of vertices whose deletion results in a graph with at least r components. These two parameters are both generalizations of traditional connectivity. Except hypercubes and complete bipartite graphs, almost all known κr(G) are about r=3. In this paper, we focus on κ4(Dn) of dual cube Dn. We first show that κ4(Dn)=n−1 for n≥4. As a corollary, we obtain that κ3(Dn)=n−1 for n≥4. Furthermore, we show that cκr+1(Dn)=rn−r(r+1)2+1 for n≥2 and 1≤r≤n−1. |
doi_str_mv | 10.1016/j.dam.2018.09.025 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2212703888</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0166218X18305006</els_id><sourcerecordid>2212703888</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-52a1cd5aad17cd35596c881bba624927ff6f92d6cc999e46cbb025368d59f5583</originalsourceid><addsrcrecordid>eNp9UMtKAzEUDaJgrX6AuwHXM-ZmmkyCKym-oOCmgruQyUMytpOazFTq15uhrl1dLvecex4IXQOuAAO77SqjthXBwCssKkzoCZoBb0jJmgZO0SxjWEmAv5-ji5Q6jDHkbYbq9XcoPn1vUhFc8WF7G9XG_1hT6ND3Vg9-74fDdDOj2hR6bG26RGdObZK9-ptz9Pb4sF4-l6vXp5fl_arUNeNDSYkCbahSBhptakoF05xD2ypGFoI0zjEniGFaCyHsgum2zb4z1VDhKOX1HN0c_-5i-BptGmQXxthnSUkIkAbXnE8oOKJ0DClF6-Qu-q2KBwlYTt3ITuZu5NSNxEJOGnN0d-TYbH_vbZRJe9tra3zMmaUJ_h_2L1TWazM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2212703888</pqid></control><display><type>article</type><title>Two kinds of generalized connectivity of dual cubes</title><source>Elsevier ScienceDirect Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Zhao, Shu-Li ; Hao, Rong-Xia ; Cheng, Eddie</creator><creatorcontrib>Zhao, Shu-Li ; Hao, Rong-Xia ; Cheng, Eddie</creatorcontrib><description>Let S⊆V(G) and κG(S) denote the maximum number k of edge-disjoint trees T1,T2,…,Tk in G such that V(Ti)⋂V(Tj)=S for any i,j∈{1,2,…,k} and i≠j. For an integer r with 2≤r≤n, the generalizedr-connectivity of a graph G is defined as κr(G)=min{κG(S)|S⊆V(G) and |S|=r}. The r-component connectivity cκr(G) of a non-complete graph G is the minimum number of vertices whose deletion results in a graph with at least r components. These two parameters are both generalizations of traditional connectivity. Except hypercubes and complete bipartite graphs, almost all known κr(G) are about r=3. In this paper, we focus on κ4(Dn) of dual cube Dn. We first show that κ4(Dn)=n−1 for n≥4. As a corollary, we obtain that κ3(Dn)=n−1 for n≥4. Furthermore, we show that cκr+1(Dn)=rn−r(r+1)2+1 for n≥2 and 1≤r≤n−1.</description><identifier>ISSN: 0166-218X</identifier><identifier>EISSN: 1872-6771</identifier><identifier>DOI: 10.1016/j.dam.2018.09.025</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Apexes ; Component connectivity ; Connectivity ; Cubes ; Deletion ; Dual cube ; Fault-tolerance ; Generalized connectivity ; Graph theory ; Hypercubes ; Trees (mathematics)</subject><ispartof>Discrete Applied Mathematics, 2019-03, Vol.257, p.306-316</ispartof><rights>2018 Elsevier B.V.</rights><rights>Copyright Elsevier BV Mar 31, 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-52a1cd5aad17cd35596c881bba624927ff6f92d6cc999e46cbb025368d59f5583</citedby><cites>FETCH-LOGICAL-c368t-52a1cd5aad17cd35596c881bba624927ff6f92d6cc999e46cbb025368d59f5583</cites><orcidid>0000-0001-8714-8750</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0166218X18305006$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Zhao, Shu-Li</creatorcontrib><creatorcontrib>Hao, Rong-Xia</creatorcontrib><creatorcontrib>Cheng, Eddie</creatorcontrib><title>Two kinds of generalized connectivity of dual cubes</title><title>Discrete Applied Mathematics</title><description>Let S⊆V(G) and κG(S) denote the maximum number k of edge-disjoint trees T1,T2,…,Tk in G such that V(Ti)⋂V(Tj)=S for any i,j∈{1,2,…,k} and i≠j. For an integer r with 2≤r≤n, the generalizedr-connectivity of a graph G is defined as κr(G)=min{κG(S)|S⊆V(G) and |S|=r}. The r-component connectivity cκr(G) of a non-complete graph G is the minimum number of vertices whose deletion results in a graph with at least r components. These two parameters are both generalizations of traditional connectivity. Except hypercubes and complete bipartite graphs, almost all known κr(G) are about r=3. In this paper, we focus on κ4(Dn) of dual cube Dn. We first show that κ4(Dn)=n−1 for n≥4. As a corollary, we obtain that κ3(Dn)=n−1 for n≥4. Furthermore, we show that cκr+1(Dn)=rn−r(r+1)2+1 for n≥2 and 1≤r≤n−1.</description><subject>Apexes</subject><subject>Component connectivity</subject><subject>Connectivity</subject><subject>Cubes</subject><subject>Deletion</subject><subject>Dual cube</subject><subject>Fault-tolerance</subject><subject>Generalized connectivity</subject><subject>Graph theory</subject><subject>Hypercubes</subject><subject>Trees (mathematics)</subject><issn>0166-218X</issn><issn>1872-6771</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9UMtKAzEUDaJgrX6AuwHXM-ZmmkyCKym-oOCmgruQyUMytpOazFTq15uhrl1dLvecex4IXQOuAAO77SqjthXBwCssKkzoCZoBb0jJmgZO0SxjWEmAv5-ji5Q6jDHkbYbq9XcoPn1vUhFc8WF7G9XG_1hT6ND3Vg9-74fDdDOj2hR6bG26RGdObZK9-ptz9Pb4sF4-l6vXp5fl_arUNeNDSYkCbahSBhptakoF05xD2ypGFoI0zjEniGFaCyHsgum2zb4z1VDhKOX1HN0c_-5i-BptGmQXxthnSUkIkAbXnE8oOKJ0DClF6-Qu-q2KBwlYTt3ITuZu5NSNxEJOGnN0d-TYbH_vbZRJe9tra3zMmaUJ_h_2L1TWazM</recordid><startdate>20190331</startdate><enddate>20190331</enddate><creator>Zhao, Shu-Li</creator><creator>Hao, Rong-Xia</creator><creator>Cheng, Eddie</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-8714-8750</orcidid></search><sort><creationdate>20190331</creationdate><title>Two kinds of generalized connectivity of dual cubes</title><author>Zhao, Shu-Li ; Hao, Rong-Xia ; Cheng, Eddie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-52a1cd5aad17cd35596c881bba624927ff6f92d6cc999e46cbb025368d59f5583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Apexes</topic><topic>Component connectivity</topic><topic>Connectivity</topic><topic>Cubes</topic><topic>Deletion</topic><topic>Dual cube</topic><topic>Fault-tolerance</topic><topic>Generalized connectivity</topic><topic>Graph theory</topic><topic>Hypercubes</topic><topic>Trees (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Shu-Li</creatorcontrib><creatorcontrib>Hao, Rong-Xia</creatorcontrib><creatorcontrib>Cheng, Eddie</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Discrete Applied Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Shu-Li</au><au>Hao, Rong-Xia</au><au>Cheng, Eddie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Two kinds of generalized connectivity of dual cubes</atitle><jtitle>Discrete Applied Mathematics</jtitle><date>2019-03-31</date><risdate>2019</risdate><volume>257</volume><spage>306</spage><epage>316</epage><pages>306-316</pages><issn>0166-218X</issn><eissn>1872-6771</eissn><abstract>Let S⊆V(G) and κG(S) denote the maximum number k of edge-disjoint trees T1,T2,…,Tk in G such that V(Ti)⋂V(Tj)=S for any i,j∈{1,2,…,k} and i≠j. For an integer r with 2≤r≤n, the generalizedr-connectivity of a graph G is defined as κr(G)=min{κG(S)|S⊆V(G) and |S|=r}. The r-component connectivity cκr(G) of a non-complete graph G is the minimum number of vertices whose deletion results in a graph with at least r components. These two parameters are both generalizations of traditional connectivity. Except hypercubes and complete bipartite graphs, almost all known κr(G) are about r=3. In this paper, we focus on κ4(Dn) of dual cube Dn. We first show that κ4(Dn)=n−1 for n≥4. As a corollary, we obtain that κ3(Dn)=n−1 for n≥4. Furthermore, we show that cκr+1(Dn)=rn−r(r+1)2+1 for n≥2 and 1≤r≤n−1.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.dam.2018.09.025</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-8714-8750</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0166-218X |
ispartof | Discrete Applied Mathematics, 2019-03, Vol.257, p.306-316 |
issn | 0166-218X 1872-6771 |
language | eng |
recordid | cdi_proquest_journals_2212703888 |
source | Elsevier ScienceDirect Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Apexes Component connectivity Connectivity Cubes Deletion Dual cube Fault-tolerance Generalized connectivity Graph theory Hypercubes Trees (mathematics) |
title | Two kinds of generalized connectivity of dual cubes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T23%3A55%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Two%20kinds%20of%20generalized%20connectivity%20of%20dual%20cubes&rft.jtitle=Discrete%20Applied%20Mathematics&rft.au=Zhao,%20Shu-Li&rft.date=2019-03-31&rft.volume=257&rft.spage=306&rft.epage=316&rft.pages=306-316&rft.issn=0166-218X&rft.eissn=1872-6771&rft_id=info:doi/10.1016/j.dam.2018.09.025&rft_dat=%3Cproquest_cross%3E2212703888%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2212703888&rft_id=info:pmid/&rft_els_id=S0166218X18305006&rfr_iscdi=true |