On graphs with the maximum edge metric dimension
An edge metric generator of a connected graph G is a vertex subset S for which every two distinct edges of G have distinct distance to some vertex of S, where the distance between a vertex v and an edge e is defined as the minimum of distances between v and the two endpoints of e in G. The smallest...
Gespeichert in:
Veröffentlicht in: | Discrete Applied Mathematics 2019-03, Vol.257, p.317-324 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | An edge metric generator of a connected graph G is a vertex subset S for which every two distinct edges of G have distinct distance to some vertex of S, where the distance between a vertex v and an edge e is defined as the minimum of distances between v and the two endpoints of e in G. The smallest cardinality of an edge metric generator of G is the edge metric dimension, denoted by dime(G). It follows that 1≤dime(G)≤n−1 for any n-vertex graph G. A graph whose edge metric dimension achieves the upper bound is topful. In this paper, the structure of topful graphs is characterized, and many necessary and sufficient conditions for a graph to be topful are obtained. Using these results we design an O(n3) time algorithm which determines whether a graph of order n is topful or not. Moreover, we describe and address an interesting class of topful graphs whose super graphs obtained by adding one edge are not topful. |
---|---|
ISSN: | 0166-218X 1872-6771 |
DOI: | 10.1016/j.dam.2018.08.031 |