Hamilton cycles in sparse locally connected graphs
A graph G is locally connected if for every v∈V(G) the open neighbourhood N(v) of v is nonempty and induces a connected graph in G. We characterize locally connected graphs of order n with less than 2n edges and show that for any natural number k the Hamilton Cycle Problem for locally connected grap...
Gespeichert in:
Veröffentlicht in: | Discrete Applied Mathematics 2019-03, Vol.257, p.276-288 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 288 |
---|---|
container_issue | |
container_start_page | 276 |
container_title | Discrete Applied Mathematics |
container_volume | 257 |
creator | van Aardt, Susan A. Burger, Alewyn P. Frick, Marietjie Thomassen, Carsten de Wet, Johan P. |
description | A graph G is locally connected if for every v∈V(G) the open neighbourhood N(v) of v is nonempty and induces a connected graph in G. We characterize locally connected graphs of order n with less than 2n edges and show that for any natural number k the Hamilton Cycle Problem for locally connected graphs of order n with m edges is polynomially solvable if m≤2n+klog2n, but NP-complete if m=2n+⌊n1∕k⌋. |
doi_str_mv | 10.1016/j.dam.2018.10.031 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2212702848</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0166218X1830578X</els_id><sourcerecordid>2212702848</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-1e9311acbbebe0c32a69bd4cb1ee4c64f8d14ea57787f25a84e882cbdf4a3ba63</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKs_wN2A6xlzM2mS4kqKtkLBjYK7kMcdzTCdGZOp0H9vSl27upzLOffxEXILtAIK4r6tvNlVjILKuqI1nJEZKMlKISWck1n2iJKB-rgkVym1lFLIakbYxuxCNw194Q6uw1SEvkijiQmLbnCm6w6FG_oe3YS--Ixm_ErX5KIxXcKbvzon789Pb6tNuX1dv6wet6WrhZpKwGUNYJy1aJG6mhmxtJ47C4jcCd4oDxzNQkolG7YwiqNSzFnfcFNbI-o5uTvNHePwvcc06XbYxz6v1IwBk5QprrILTi4Xh5QiNnqMYWfiQQPVRzS61RmNPqI5tjKanHk4ZTCf_xMw6uQC9g59iPlT7YfwT_oXv0xsAg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2212702848</pqid></control><display><type>article</type><title>Hamilton cycles in sparse locally connected graphs</title><source>Elsevier ScienceDirect Journals Complete</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>van Aardt, Susan A. ; Burger, Alewyn P. ; Frick, Marietjie ; Thomassen, Carsten ; de Wet, Johan P.</creator><creatorcontrib>van Aardt, Susan A. ; Burger, Alewyn P. ; Frick, Marietjie ; Thomassen, Carsten ; de Wet, Johan P.</creatorcontrib><description>A graph G is locally connected if for every v∈V(G) the open neighbourhood N(v) of v is nonempty and induces a connected graph in G. We characterize locally connected graphs of order n with less than 2n edges and show that for any natural number k the Hamilton Cycle Problem for locally connected graphs of order n with m edges is polynomially solvable if m≤2n+klog2n, but NP-complete if m=2n+⌊n1∕k⌋.</description><identifier>ISSN: 0166-218X</identifier><identifier>EISSN: 1872-6771</identifier><identifier>DOI: 10.1016/j.dam.2018.10.031</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Graphs ; Hamiltonian ; Locally connected ; NP-complete ; Polynomial time algorithm</subject><ispartof>Discrete Applied Mathematics, 2019-03, Vol.257, p.276-288</ispartof><rights>2018 Elsevier B.V.</rights><rights>Copyright Elsevier BV Mar 31, 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-1e9311acbbebe0c32a69bd4cb1ee4c64f8d14ea57787f25a84e882cbdf4a3ba63</citedby><cites>FETCH-LOGICAL-c368t-1e9311acbbebe0c32a69bd4cb1ee4c64f8d14ea57787f25a84e882cbdf4a3ba63</cites><orcidid>0000-0001-5124-5460</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.dam.2018.10.031$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>van Aardt, Susan A.</creatorcontrib><creatorcontrib>Burger, Alewyn P.</creatorcontrib><creatorcontrib>Frick, Marietjie</creatorcontrib><creatorcontrib>Thomassen, Carsten</creatorcontrib><creatorcontrib>de Wet, Johan P.</creatorcontrib><title>Hamilton cycles in sparse locally connected graphs</title><title>Discrete Applied Mathematics</title><description>A graph G is locally connected if for every v∈V(G) the open neighbourhood N(v) of v is nonempty and induces a connected graph in G. We characterize locally connected graphs of order n with less than 2n edges and show that for any natural number k the Hamilton Cycle Problem for locally connected graphs of order n with m edges is polynomially solvable if m≤2n+klog2n, but NP-complete if m=2n+⌊n1∕k⌋.</description><subject>Graphs</subject><subject>Hamiltonian</subject><subject>Locally connected</subject><subject>NP-complete</subject><subject>Polynomial time algorithm</subject><issn>0166-218X</issn><issn>1872-6771</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhYMoWKs_wN2A6xlzM2mS4kqKtkLBjYK7kMcdzTCdGZOp0H9vSl27upzLOffxEXILtAIK4r6tvNlVjILKuqI1nJEZKMlKISWck1n2iJKB-rgkVym1lFLIakbYxuxCNw194Q6uw1SEvkijiQmLbnCm6w6FG_oe3YS--Ixm_ErX5KIxXcKbvzon789Pb6tNuX1dv6wet6WrhZpKwGUNYJy1aJG6mhmxtJ47C4jcCd4oDxzNQkolG7YwiqNSzFnfcFNbI-o5uTvNHePwvcc06XbYxz6v1IwBk5QprrILTi4Xh5QiNnqMYWfiQQPVRzS61RmNPqI5tjKanHk4ZTCf_xMw6uQC9g59iPlT7YfwT_oXv0xsAg</recordid><startdate>20190331</startdate><enddate>20190331</enddate><creator>van Aardt, Susan A.</creator><creator>Burger, Alewyn P.</creator><creator>Frick, Marietjie</creator><creator>Thomassen, Carsten</creator><creator>de Wet, Johan P.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-5124-5460</orcidid></search><sort><creationdate>20190331</creationdate><title>Hamilton cycles in sparse locally connected graphs</title><author>van Aardt, Susan A. ; Burger, Alewyn P. ; Frick, Marietjie ; Thomassen, Carsten ; de Wet, Johan P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-1e9311acbbebe0c32a69bd4cb1ee4c64f8d14ea57787f25a84e882cbdf4a3ba63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Graphs</topic><topic>Hamiltonian</topic><topic>Locally connected</topic><topic>NP-complete</topic><topic>Polynomial time algorithm</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>van Aardt, Susan A.</creatorcontrib><creatorcontrib>Burger, Alewyn P.</creatorcontrib><creatorcontrib>Frick, Marietjie</creatorcontrib><creatorcontrib>Thomassen, Carsten</creatorcontrib><creatorcontrib>de Wet, Johan P.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Discrete Applied Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>van Aardt, Susan A.</au><au>Burger, Alewyn P.</au><au>Frick, Marietjie</au><au>Thomassen, Carsten</au><au>de Wet, Johan P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hamilton cycles in sparse locally connected graphs</atitle><jtitle>Discrete Applied Mathematics</jtitle><date>2019-03-31</date><risdate>2019</risdate><volume>257</volume><spage>276</spage><epage>288</epage><pages>276-288</pages><issn>0166-218X</issn><eissn>1872-6771</eissn><abstract>A graph G is locally connected if for every v∈V(G) the open neighbourhood N(v) of v is nonempty and induces a connected graph in G. We characterize locally connected graphs of order n with less than 2n edges and show that for any natural number k the Hamilton Cycle Problem for locally connected graphs of order n with m edges is polynomially solvable if m≤2n+klog2n, but NP-complete if m=2n+⌊n1∕k⌋.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.dam.2018.10.031</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-5124-5460</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0166-218X |
ispartof | Discrete Applied Mathematics, 2019-03, Vol.257, p.276-288 |
issn | 0166-218X 1872-6771 |
language | eng |
recordid | cdi_proquest_journals_2212702848 |
source | Elsevier ScienceDirect Journals Complete; EZB-FREE-00999 freely available EZB journals |
subjects | Graphs Hamiltonian Locally connected NP-complete Polynomial time algorithm |
title | Hamilton cycles in sparse locally connected graphs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T04%3A35%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hamilton%20cycles%20in%20sparse%20locally%20connected%20graphs&rft.jtitle=Discrete%20Applied%20Mathematics&rft.au=van%20Aardt,%20Susan%20A.&rft.date=2019-03-31&rft.volume=257&rft.spage=276&rft.epage=288&rft.pages=276-288&rft.issn=0166-218X&rft.eissn=1872-6771&rft_id=info:doi/10.1016/j.dam.2018.10.031&rft_dat=%3Cproquest_cross%3E2212702848%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2212702848&rft_id=info:pmid/&rft_els_id=S0166218X1830578X&rfr_iscdi=true |