Hamilton cycles in sparse locally connected graphs
A graph G is locally connected if for every v∈V(G) the open neighbourhood N(v) of v is nonempty and induces a connected graph in G. We characterize locally connected graphs of order n with less than 2n edges and show that for any natural number k the Hamilton Cycle Problem for locally connected grap...
Gespeichert in:
Veröffentlicht in: | Discrete Applied Mathematics 2019-03, Vol.257, p.276-288 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A graph G is locally connected if for every v∈V(G) the open neighbourhood N(v) of v is nonempty and induces a connected graph in G. We characterize locally connected graphs of order n with less than 2n edges and show that for any natural number k the Hamilton Cycle Problem for locally connected graphs of order n with m edges is polynomially solvable if m≤2n+klog2n, but NP-complete if m=2n+⌊n1∕k⌋. |
---|---|
ISSN: | 0166-218X 1872-6771 |
DOI: | 10.1016/j.dam.2018.10.031 |