Heterologous expression of a plastid EF-Tu reduces protein thermal aggregation and enhances CO2 fixation in wheat (Triticum aestivum) following heat stress
Heat stress is a major constraint to wheat production and negatively impacts grain quality, causing tremendous economic losses, and may become a more troublesome factor due to global warming. At the cellular level, heat stress causes denaturation and aggregation of proteins and injury to membranes l...
Gespeichert in:
Veröffentlicht in: | Plant molecular biology 2008-10, Vol.68 (3), p.277-288 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 288 |
---|---|
container_issue | 3 |
container_start_page | 277 |
container_title | Plant molecular biology |
container_volume | 68 |
creator | Fu, Jianming Momčilović, Ivana Clemente, Thomas E. Nersesian, Natalya Trick, Harold N. Ristic, Zoran |
description | Heat stress is a major constraint to wheat production and negatively impacts grain quality, causing tremendous economic losses, and may become a more troublesome factor due to global warming. At the cellular level, heat stress causes denaturation and aggregation of proteins and injury to membranes leading to alterations in metabolic fluxes. Protein aggregation is irreversible, and protection of proteins from thermal aggregation is a strategy a cell uses to tolerate heat stress. Here we report on the development of transgenic wheat (
Triticum aestivum
) events, expressing a maize gene coding for plastidal protein synthesis elongation factor (EF-Tu), which, compared to non-transgenic plants, display reduced thermal aggregation of leaf proteins, reduced heat injury to photosynthetic membranes (thylakoids), and enhanced rate of CO
2
fixation after exposure to heat stress. The results support the concept that EF-Tu ameliorates negative effects of heat stress by acting as a molecular chaperone. This is the first demonstration of the introduction of a plastidal EF-Tu in plants that leads to protection against heat injury and enhanced photosynthesis after heat stress. This is also the first demonstration that a gene other than HSP gene can be used for improvement of heat tolerance and that the improvement is possible in a species that has a complex genome, hexaploid wheat. The results strongly suggest that heat tolerance of wheat, and possibly other crop plants, can be improved by modulating expression of plastidal EF-Tu and/or by selection of genotypes with increased endogenous levels of this protein. |
doi_str_mv | 10.1007/s11103-008-9369-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_221244470</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1896367741</sourcerecordid><originalsourceid>FETCH-LOGICAL-c435t-23e77361188018420aa9b090332a0dc5aabc2e50cc2683c6070ac55a6a5946d43</originalsourceid><addsrcrecordid>eNp1kc1u1DAUhS0EokPhAdggi1VZmF7_xEmWaNRSpErdTNfWHcfJpEriwXZoeZa-bB0yUles7uJ-59yfQ8hnDt85QHkZOecgGUDFaqlrpt-QDS9KyQoQ1VuyAa5LphQXZ-RDjA8AWSX1e3LGKy1EKeWGPN-45IIffOfnSN3TMbgYez9R31KkxwFj6ht6dc12Mw2uma2L9Bh8cv1E08GFEQeKXRdch2mR4dRQNx1wWsDtnaBt_7R2suDx4DDRi13oU2_nkaLL7n_m8Rtt_TD4x37q6D8kpmWNj-Rdi0N0n071nNxfX-22N-z27uev7Y9bZpUsEhPSlaXUnFcV8EoJQKz3UIOUAqGxBeLeCleAtUJX0mooAW1RoMaiVrpR8px8XX3zYb_nvJN58HOY8kgjBBdKqRIyxFfIBh9jcK05hn7E8NdwMEsaZk3D5DTMkobRWfPlZDzvR9e8Kk7vz4BYgZhbU-fC6-T_u74A_OaWhA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>221244470</pqid></control><display><type>article</type><title>Heterologous expression of a plastid EF-Tu reduces protein thermal aggregation and enhances CO2 fixation in wheat (Triticum aestivum) following heat stress</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Fu, Jianming ; Momčilović, Ivana ; Clemente, Thomas E. ; Nersesian, Natalya ; Trick, Harold N. ; Ristic, Zoran</creator><creatorcontrib>Fu, Jianming ; Momčilović, Ivana ; Clemente, Thomas E. ; Nersesian, Natalya ; Trick, Harold N. ; Ristic, Zoran</creatorcontrib><description>Heat stress is a major constraint to wheat production and negatively impacts grain quality, causing tremendous economic losses, and may become a more troublesome factor due to global warming. At the cellular level, heat stress causes denaturation and aggregation of proteins and injury to membranes leading to alterations in metabolic fluxes. Protein aggregation is irreversible, and protection of proteins from thermal aggregation is a strategy a cell uses to tolerate heat stress. Here we report on the development of transgenic wheat (
Triticum aestivum
) events, expressing a maize gene coding for plastidal protein synthesis elongation factor (EF-Tu), which, compared to non-transgenic plants, display reduced thermal aggregation of leaf proteins, reduced heat injury to photosynthetic membranes (thylakoids), and enhanced rate of CO
2
fixation after exposure to heat stress. The results support the concept that EF-Tu ameliorates negative effects of heat stress by acting as a molecular chaperone. This is the first demonstration of the introduction of a plastidal EF-Tu in plants that leads to protection against heat injury and enhanced photosynthesis after heat stress. This is also the first demonstration that a gene other than HSP gene can be used for improvement of heat tolerance and that the improvement is possible in a species that has a complex genome, hexaploid wheat. The results strongly suggest that heat tolerance of wheat, and possibly other crop plants, can be improved by modulating expression of plastidal EF-Tu and/or by selection of genotypes with increased endogenous levels of this protein.</description><identifier>ISSN: 0167-4412</identifier><identifier>EISSN: 1573-5028</identifier><identifier>DOI: 10.1007/s11103-008-9369-6</identifier><identifier>PMID: 18622733</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Biochemistry ; Biomedical and Life Sciences ; Carbon dioxide ; Carbon Dioxide - metabolism ; Carbon dioxide fixation ; Climate change ; Crop production ; Flowers - genetics ; Flowers - metabolism ; Gene Expression ; Genotypes ; Global warming ; Heat ; Heat tolerance ; Heat-Shock Response ; Life Sciences ; Peptide Elongation Factor Tu - genetics ; Peptide Elongation Factor Tu - metabolism ; Photosynthesis ; Plant biology ; Plant Leaves - genetics ; Plant Leaves - growth & development ; Plant Leaves - metabolism ; Plant Pathology ; Plant Sciences ; Plants, Genetically Modified ; Plastids - metabolism ; Protein Denaturation ; Protein synthesis ; Proteins ; Thylakoids - metabolism ; Time Factors ; Transgenic plants ; Triticum - genetics ; Triticum - growth & development ; Triticum - metabolism ; Wheat ; Zea mays - genetics ; Zea mays - metabolism</subject><ispartof>Plant molecular biology, 2008-10, Vol.68 (3), p.277-288</ispartof><rights>Springer Science+Business Media B.V. 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c435t-23e77361188018420aa9b090332a0dc5aabc2e50cc2683c6070ac55a6a5946d43</citedby><cites>FETCH-LOGICAL-c435t-23e77361188018420aa9b090332a0dc5aabc2e50cc2683c6070ac55a6a5946d43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11103-008-9369-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11103-008-9369-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18622733$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fu, Jianming</creatorcontrib><creatorcontrib>Momčilović, Ivana</creatorcontrib><creatorcontrib>Clemente, Thomas E.</creatorcontrib><creatorcontrib>Nersesian, Natalya</creatorcontrib><creatorcontrib>Trick, Harold N.</creatorcontrib><creatorcontrib>Ristic, Zoran</creatorcontrib><title>Heterologous expression of a plastid EF-Tu reduces protein thermal aggregation and enhances CO2 fixation in wheat (Triticum aestivum) following heat stress</title><title>Plant molecular biology</title><addtitle>Plant Mol Biol</addtitle><addtitle>Plant Mol Biol</addtitle><description>Heat stress is a major constraint to wheat production and negatively impacts grain quality, causing tremendous economic losses, and may become a more troublesome factor due to global warming. At the cellular level, heat stress causes denaturation and aggregation of proteins and injury to membranes leading to alterations in metabolic fluxes. Protein aggregation is irreversible, and protection of proteins from thermal aggregation is a strategy a cell uses to tolerate heat stress. Here we report on the development of transgenic wheat (
Triticum aestivum
) events, expressing a maize gene coding for plastidal protein synthesis elongation factor (EF-Tu), which, compared to non-transgenic plants, display reduced thermal aggregation of leaf proteins, reduced heat injury to photosynthetic membranes (thylakoids), and enhanced rate of CO
2
fixation after exposure to heat stress. The results support the concept that EF-Tu ameliorates negative effects of heat stress by acting as a molecular chaperone. This is the first demonstration of the introduction of a plastidal EF-Tu in plants that leads to protection against heat injury and enhanced photosynthesis after heat stress. This is also the first demonstration that a gene other than HSP gene can be used for improvement of heat tolerance and that the improvement is possible in a species that has a complex genome, hexaploid wheat. The results strongly suggest that heat tolerance of wheat, and possibly other crop plants, can be improved by modulating expression of plastidal EF-Tu and/or by selection of genotypes with increased endogenous levels of this protein.</description><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Carbon dioxide</subject><subject>Carbon Dioxide - metabolism</subject><subject>Carbon dioxide fixation</subject><subject>Climate change</subject><subject>Crop production</subject><subject>Flowers - genetics</subject><subject>Flowers - metabolism</subject><subject>Gene Expression</subject><subject>Genotypes</subject><subject>Global warming</subject><subject>Heat</subject><subject>Heat tolerance</subject><subject>Heat-Shock Response</subject><subject>Life Sciences</subject><subject>Peptide Elongation Factor Tu - genetics</subject><subject>Peptide Elongation Factor Tu - metabolism</subject><subject>Photosynthesis</subject><subject>Plant biology</subject><subject>Plant Leaves - genetics</subject><subject>Plant Leaves - growth & development</subject><subject>Plant Leaves - metabolism</subject><subject>Plant Pathology</subject><subject>Plant Sciences</subject><subject>Plants, Genetically Modified</subject><subject>Plastids - metabolism</subject><subject>Protein Denaturation</subject><subject>Protein synthesis</subject><subject>Proteins</subject><subject>Thylakoids - metabolism</subject><subject>Time Factors</subject><subject>Transgenic plants</subject><subject>Triticum - genetics</subject><subject>Triticum - growth & development</subject><subject>Triticum - metabolism</subject><subject>Wheat</subject><subject>Zea mays - genetics</subject><subject>Zea mays - metabolism</subject><issn>0167-4412</issn><issn>1573-5028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kc1u1DAUhS0EokPhAdggi1VZmF7_xEmWaNRSpErdTNfWHcfJpEriwXZoeZa-bB0yUles7uJ-59yfQ8hnDt85QHkZOecgGUDFaqlrpt-QDS9KyQoQ1VuyAa5LphQXZ-RDjA8AWSX1e3LGKy1EKeWGPN-45IIffOfnSN3TMbgYez9R31KkxwFj6ht6dc12Mw2uma2L9Bh8cv1E08GFEQeKXRdch2mR4dRQNx1wWsDtnaBt_7R2suDx4DDRi13oU2_nkaLL7n_m8Rtt_TD4x37q6D8kpmWNj-Rdi0N0n071nNxfX-22N-z27uev7Y9bZpUsEhPSlaXUnFcV8EoJQKz3UIOUAqGxBeLeCleAtUJX0mooAW1RoMaiVrpR8px8XX3zYb_nvJN58HOY8kgjBBdKqRIyxFfIBh9jcK05hn7E8NdwMEsaZk3D5DTMkobRWfPlZDzvR9e8Kk7vz4BYgZhbU-fC6-T_u74A_OaWhA</recordid><startdate>20081001</startdate><enddate>20081001</enddate><creator>Fu, Jianming</creator><creator>Momčilović, Ivana</creator><creator>Clemente, Thomas E.</creator><creator>Nersesian, Natalya</creator><creator>Trick, Harold N.</creator><creator>Ristic, Zoran</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope></search><sort><creationdate>20081001</creationdate><title>Heterologous expression of a plastid EF-Tu reduces protein thermal aggregation and enhances CO2 fixation in wheat (Triticum aestivum) following heat stress</title><author>Fu, Jianming ; Momčilović, Ivana ; Clemente, Thomas E. ; Nersesian, Natalya ; Trick, Harold N. ; Ristic, Zoran</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c435t-23e77361188018420aa9b090332a0dc5aabc2e50cc2683c6070ac55a6a5946d43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Carbon dioxide</topic><topic>Carbon Dioxide - metabolism</topic><topic>Carbon dioxide fixation</topic><topic>Climate change</topic><topic>Crop production</topic><topic>Flowers - genetics</topic><topic>Flowers - metabolism</topic><topic>Gene Expression</topic><topic>Genotypes</topic><topic>Global warming</topic><topic>Heat</topic><topic>Heat tolerance</topic><topic>Heat-Shock Response</topic><topic>Life Sciences</topic><topic>Peptide Elongation Factor Tu - genetics</topic><topic>Peptide Elongation Factor Tu - metabolism</topic><topic>Photosynthesis</topic><topic>Plant biology</topic><topic>Plant Leaves - genetics</topic><topic>Plant Leaves - growth & development</topic><topic>Plant Leaves - metabolism</topic><topic>Plant Pathology</topic><topic>Plant Sciences</topic><topic>Plants, Genetically Modified</topic><topic>Plastids - metabolism</topic><topic>Protein Denaturation</topic><topic>Protein synthesis</topic><topic>Proteins</topic><topic>Thylakoids - metabolism</topic><topic>Time Factors</topic><topic>Transgenic plants</topic><topic>Triticum - genetics</topic><topic>Triticum - growth & development</topic><topic>Triticum - metabolism</topic><topic>Wheat</topic><topic>Zea mays - genetics</topic><topic>Zea mays - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fu, Jianming</creatorcontrib><creatorcontrib>Momčilović, Ivana</creatorcontrib><creatorcontrib>Clemente, Thomas E.</creatorcontrib><creatorcontrib>Nersesian, Natalya</creatorcontrib><creatorcontrib>Trick, Harold N.</creatorcontrib><creatorcontrib>Ristic, Zoran</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><jtitle>Plant molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fu, Jianming</au><au>Momčilović, Ivana</au><au>Clemente, Thomas E.</au><au>Nersesian, Natalya</au><au>Trick, Harold N.</au><au>Ristic, Zoran</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heterologous expression of a plastid EF-Tu reduces protein thermal aggregation and enhances CO2 fixation in wheat (Triticum aestivum) following heat stress</atitle><jtitle>Plant molecular biology</jtitle><stitle>Plant Mol Biol</stitle><addtitle>Plant Mol Biol</addtitle><date>2008-10-01</date><risdate>2008</risdate><volume>68</volume><issue>3</issue><spage>277</spage><epage>288</epage><pages>277-288</pages><issn>0167-4412</issn><eissn>1573-5028</eissn><abstract>Heat stress is a major constraint to wheat production and negatively impacts grain quality, causing tremendous economic losses, and may become a more troublesome factor due to global warming. At the cellular level, heat stress causes denaturation and aggregation of proteins and injury to membranes leading to alterations in metabolic fluxes. Protein aggregation is irreversible, and protection of proteins from thermal aggregation is a strategy a cell uses to tolerate heat stress. Here we report on the development of transgenic wheat (
Triticum aestivum
) events, expressing a maize gene coding for plastidal protein synthesis elongation factor (EF-Tu), which, compared to non-transgenic plants, display reduced thermal aggregation of leaf proteins, reduced heat injury to photosynthetic membranes (thylakoids), and enhanced rate of CO
2
fixation after exposure to heat stress. The results support the concept that EF-Tu ameliorates negative effects of heat stress by acting as a molecular chaperone. This is the first demonstration of the introduction of a plastidal EF-Tu in plants that leads to protection against heat injury and enhanced photosynthesis after heat stress. This is also the first demonstration that a gene other than HSP gene can be used for improvement of heat tolerance and that the improvement is possible in a species that has a complex genome, hexaploid wheat. The results strongly suggest that heat tolerance of wheat, and possibly other crop plants, can be improved by modulating expression of plastidal EF-Tu and/or by selection of genotypes with increased endogenous levels of this protein.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><pmid>18622733</pmid><doi>10.1007/s11103-008-9369-6</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0167-4412 |
ispartof | Plant molecular biology, 2008-10, Vol.68 (3), p.277-288 |
issn | 0167-4412 1573-5028 |
language | eng |
recordid | cdi_proquest_journals_221244470 |
source | MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | Biochemistry Biomedical and Life Sciences Carbon dioxide Carbon Dioxide - metabolism Carbon dioxide fixation Climate change Crop production Flowers - genetics Flowers - metabolism Gene Expression Genotypes Global warming Heat Heat tolerance Heat-Shock Response Life Sciences Peptide Elongation Factor Tu - genetics Peptide Elongation Factor Tu - metabolism Photosynthesis Plant biology Plant Leaves - genetics Plant Leaves - growth & development Plant Leaves - metabolism Plant Pathology Plant Sciences Plants, Genetically Modified Plastids - metabolism Protein Denaturation Protein synthesis Proteins Thylakoids - metabolism Time Factors Transgenic plants Triticum - genetics Triticum - growth & development Triticum - metabolism Wheat Zea mays - genetics Zea mays - metabolism |
title | Heterologous expression of a plastid EF-Tu reduces protein thermal aggregation and enhances CO2 fixation in wheat (Triticum aestivum) following heat stress |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T01%3A18%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heterologous%20expression%20of%20a%20plastid%20EF-Tu%20reduces%20protein%20thermal%20aggregation%20and%20enhances%20CO2%20fixation%20in%20wheat%20(Triticum%20aestivum)%20following%20heat%20stress&rft.jtitle=Plant%20molecular%20biology&rft.au=Fu,%20Jianming&rft.date=2008-10-01&rft.volume=68&rft.issue=3&rft.spage=277&rft.epage=288&rft.pages=277-288&rft.issn=0167-4412&rft.eissn=1573-5028&rft_id=info:doi/10.1007/s11103-008-9369-6&rft_dat=%3Cproquest_cross%3E1896367741%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=221244470&rft_id=info:pmid/18622733&rfr_iscdi=true |