SnTe x Se1−x Alloy: An Effective Alternative to SnSe Nano-crystalline Thin Films for Optoelectronic Applications

As prepared by fusion, SnTexSe1−x (x = 0.68) alloy is found to possess mixed phases of hexagonal Te and orthorhombic SnSe. The deposited films of this alloy demonstrate incongruent evaporation of the constituents. Reductions in c-parameter and strain along the z-axis in lattices of SnSe and Te const...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of electronic materials 2019-07, Vol.48 (7), p.4335-4341
Hauptverfasser: Devi, Anjali, Banotra, Arun, Kumar, Shiv, Kapoor, Ashok K, Padha, Naresh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4341
container_issue 7
container_start_page 4335
container_title Journal of electronic materials
container_volume 48
creator Devi, Anjali
Banotra, Arun
Kumar, Shiv
Kapoor, Ashok K
Padha, Naresh
description As prepared by fusion, SnTexSe1−x (x = 0.68) alloy is found to possess mixed phases of hexagonal Te and orthorhombic SnSe. The deposited films of this alloy demonstrate incongruent evaporation of the constituents. Reductions in c-parameter and strain along the z-axis in lattices of SnSe and Te constituents have been observed in these films at 353 K. These deviations in the structure of SnTexSe1−x films make it superior to SnSe for various optoelectronic applications. The absorption coefficient of SnTexSe1−x films is higher than SnSe, and its bandgap attains a value of 0.93 eV. Further, resistivity value of SnTexSe1−x (∼ 6.12 × 10−2 Ω cm) is lower and carrier concentration (∼ 1.31 × 1019 cm−3) is higher than SnSe, whereas its mobility value (∼ 25.8 cm2/V s) matches SnSe and similar materials. The surface quality of SnTexSe1−x improves and number of crystallites increases. The interface of p-SnTexSe1−x with Ag metal forms a Schottky diode. The current–voltage (I–V) behaviour of Ag/p-SnTexSe1−x Schottky diodes is analysed and diode parameters are determined by using thermionic emission and diffusion (TED) current transport mechanism.
doi_str_mv 10.1007/s11664-019-07202-w
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2212340722</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2212340722</sourcerecordid><originalsourceid>FETCH-proquest_journals_22123407223</originalsourceid><addsrcrecordid>eNqNj0FOwzAURC0EEoFyAVZfYm3wt5O0sItQq65gkSy6q6LoR7gy_sF2ob0Ba47ISbAQB2A1o9HojUaIa1S3qNT8LiLWdSkV3ks110rLjxNRYFUaiYt6cyoKZWqUlTbVubiIcacUVrjAQoTWdwQHaAm_P78O0DjHxwdoPCzHkYZk3ylniYLvf31iaH1L8NR7lkM4xtQ7Zz1B92I9rKx7jTBygOcpMbkMCOztAM00OTtkBPs4E2dj7yJd_emluFktu8e1nAK_7Smm7Y73ec_FrdaoTZkfafO_1g9cylJ8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2212340722</pqid></control><display><type>article</type><title>SnTe x Se1−x Alloy: An Effective Alternative to SnSe Nano-crystalline Thin Films for Optoelectronic Applications</title><source>SpringerLink Journals - AutoHoldings</source><creator>Devi, Anjali ; Banotra, Arun ; Kumar, Shiv ; Kapoor, Ashok K ; Padha, Naresh</creator><creatorcontrib>Devi, Anjali ; Banotra, Arun ; Kumar, Shiv ; Kapoor, Ashok K ; Padha, Naresh</creatorcontrib><description>As prepared by fusion, SnTexSe1−x (x = 0.68) alloy is found to possess mixed phases of hexagonal Te and orthorhombic SnSe. The deposited films of this alloy demonstrate incongruent evaporation of the constituents. Reductions in c-parameter and strain along the z-axis in lattices of SnSe and Te constituents have been observed in these films at 353 K. These deviations in the structure of SnTexSe1−x films make it superior to SnSe for various optoelectronic applications. The absorption coefficient of SnTexSe1−x films is higher than SnSe, and its bandgap attains a value of 0.93 eV. Further, resistivity value of SnTexSe1−x (∼ 6.12 × 10−2 Ω cm) is lower and carrier concentration (∼ 1.31 × 1019 cm−3) is higher than SnSe, whereas its mobility value (∼ 25.8 cm2/V s) matches SnSe and similar materials. The surface quality of SnTexSe1−x improves and number of crystallites increases. The interface of p-SnTexSe1−x with Ag metal forms a Schottky diode. The current–voltage (I–V) behaviour of Ag/p-SnTexSe1−x Schottky diodes is analysed and diode parameters are determined by using thermionic emission and diffusion (TED) current transport mechanism.</description><identifier>ISSN: 0361-5235</identifier><identifier>EISSN: 1543-186X</identifier><identifier>DOI: 10.1007/s11664-019-07202-w</identifier><language>eng</language><publisher>Warrendale: Springer Nature B.V</publisher><subject>Absorptivity ; Carrier density ; Crystallites ; Diodes ; Emission analysis ; Lattices ; Metallurgical constituents ; Nanoalloys ; Optoelectronics ; Parameters ; Schottky diodes ; Silver ; Surface properties ; Tellurium ; Thermionic emission ; Thin films</subject><ispartof>Journal of electronic materials, 2019-07, Vol.48 (7), p.4335-4341</ispartof><rights>Journal of Electronic Materials is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Devi, Anjali</creatorcontrib><creatorcontrib>Banotra, Arun</creatorcontrib><creatorcontrib>Kumar, Shiv</creatorcontrib><creatorcontrib>Kapoor, Ashok K</creatorcontrib><creatorcontrib>Padha, Naresh</creatorcontrib><title>SnTe x Se1−x Alloy: An Effective Alternative to SnSe Nano-crystalline Thin Films for Optoelectronic Applications</title><title>Journal of electronic materials</title><description>As prepared by fusion, SnTexSe1−x (x = 0.68) alloy is found to possess mixed phases of hexagonal Te and orthorhombic SnSe. The deposited films of this alloy demonstrate incongruent evaporation of the constituents. Reductions in c-parameter and strain along the z-axis in lattices of SnSe and Te constituents have been observed in these films at 353 K. These deviations in the structure of SnTexSe1−x films make it superior to SnSe for various optoelectronic applications. The absorption coefficient of SnTexSe1−x films is higher than SnSe, and its bandgap attains a value of 0.93 eV. Further, resistivity value of SnTexSe1−x (∼ 6.12 × 10−2 Ω cm) is lower and carrier concentration (∼ 1.31 × 1019 cm−3) is higher than SnSe, whereas its mobility value (∼ 25.8 cm2/V s) matches SnSe and similar materials. The surface quality of SnTexSe1−x improves and number of crystallites increases. The interface of p-SnTexSe1−x with Ag metal forms a Schottky diode. The current–voltage (I–V) behaviour of Ag/p-SnTexSe1−x Schottky diodes is analysed and diode parameters are determined by using thermionic emission and diffusion (TED) current transport mechanism.</description><subject>Absorptivity</subject><subject>Carrier density</subject><subject>Crystallites</subject><subject>Diodes</subject><subject>Emission analysis</subject><subject>Lattices</subject><subject>Metallurgical constituents</subject><subject>Nanoalloys</subject><subject>Optoelectronics</subject><subject>Parameters</subject><subject>Schottky diodes</subject><subject>Silver</subject><subject>Surface properties</subject><subject>Tellurium</subject><subject>Thermionic emission</subject><subject>Thin films</subject><issn>0361-5235</issn><issn>1543-186X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNj0FOwzAURC0EEoFyAVZfYm3wt5O0sItQq65gkSy6q6LoR7gy_sF2ob0Ba47ISbAQB2A1o9HojUaIa1S3qNT8LiLWdSkV3ks110rLjxNRYFUaiYt6cyoKZWqUlTbVubiIcacUVrjAQoTWdwQHaAm_P78O0DjHxwdoPCzHkYZk3ylniYLvf31iaH1L8NR7lkM4xtQ7Zz1B92I9rKx7jTBygOcpMbkMCOztAM00OTtkBPs4E2dj7yJd_emluFktu8e1nAK_7Smm7Y73ec_FrdaoTZkfafO_1g9cylJ8</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>Devi, Anjali</creator><creator>Banotra, Arun</creator><creator>Kumar, Shiv</creator><creator>Kapoor, Ashok K</creator><creator>Padha, Naresh</creator><general>Springer Nature B.V</general><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20190701</creationdate><title>SnTe x Se1−x Alloy: An Effective Alternative to SnSe Nano-crystalline Thin Films for Optoelectronic Applications</title><author>Devi, Anjali ; Banotra, Arun ; Kumar, Shiv ; Kapoor, Ashok K ; Padha, Naresh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_22123407223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Absorptivity</topic><topic>Carrier density</topic><topic>Crystallites</topic><topic>Diodes</topic><topic>Emission analysis</topic><topic>Lattices</topic><topic>Metallurgical constituents</topic><topic>Nanoalloys</topic><topic>Optoelectronics</topic><topic>Parameters</topic><topic>Schottky diodes</topic><topic>Silver</topic><topic>Surface properties</topic><topic>Tellurium</topic><topic>Thermionic emission</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Devi, Anjali</creatorcontrib><creatorcontrib>Banotra, Arun</creatorcontrib><creatorcontrib>Kumar, Shiv</creatorcontrib><creatorcontrib>Kapoor, Ashok K</creatorcontrib><creatorcontrib>Padha, Naresh</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of electronic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Devi, Anjali</au><au>Banotra, Arun</au><au>Kumar, Shiv</au><au>Kapoor, Ashok K</au><au>Padha, Naresh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SnTe x Se1−x Alloy: An Effective Alternative to SnSe Nano-crystalline Thin Films for Optoelectronic Applications</atitle><jtitle>Journal of electronic materials</jtitle><date>2019-07-01</date><risdate>2019</risdate><volume>48</volume><issue>7</issue><spage>4335</spage><epage>4341</epage><pages>4335-4341</pages><issn>0361-5235</issn><eissn>1543-186X</eissn><abstract>As prepared by fusion, SnTexSe1−x (x = 0.68) alloy is found to possess mixed phases of hexagonal Te and orthorhombic SnSe. The deposited films of this alloy demonstrate incongruent evaporation of the constituents. Reductions in c-parameter and strain along the z-axis in lattices of SnSe and Te constituents have been observed in these films at 353 K. These deviations in the structure of SnTexSe1−x films make it superior to SnSe for various optoelectronic applications. The absorption coefficient of SnTexSe1−x films is higher than SnSe, and its bandgap attains a value of 0.93 eV. Further, resistivity value of SnTexSe1−x (∼ 6.12 × 10−2 Ω cm) is lower and carrier concentration (∼ 1.31 × 1019 cm−3) is higher than SnSe, whereas its mobility value (∼ 25.8 cm2/V s) matches SnSe and similar materials. The surface quality of SnTexSe1−x improves and number of crystallites increases. The interface of p-SnTexSe1−x with Ag metal forms a Schottky diode. The current–voltage (I–V) behaviour of Ag/p-SnTexSe1−x Schottky diodes is analysed and diode parameters are determined by using thermionic emission and diffusion (TED) current transport mechanism.</abstract><cop>Warrendale</cop><pub>Springer Nature B.V</pub><doi>10.1007/s11664-019-07202-w</doi></addata></record>
fulltext fulltext
identifier ISSN: 0361-5235
ispartof Journal of electronic materials, 2019-07, Vol.48 (7), p.4335-4341
issn 0361-5235
1543-186X
language eng
recordid cdi_proquest_journals_2212340722
source SpringerLink Journals - AutoHoldings
subjects Absorptivity
Carrier density
Crystallites
Diodes
Emission analysis
Lattices
Metallurgical constituents
Nanoalloys
Optoelectronics
Parameters
Schottky diodes
Silver
Surface properties
Tellurium
Thermionic emission
Thin films
title SnTe x Se1−x Alloy: An Effective Alternative to SnSe Nano-crystalline Thin Films for Optoelectronic Applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T02%3A55%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SnTe%20x%20Se1%E2%88%92x%20Alloy:%20An%20Effective%20Alternative%20to%20SnSe%20Nano-crystalline%20Thin%20Films%20for%20Optoelectronic%20Applications&rft.jtitle=Journal%20of%20electronic%20materials&rft.au=Devi,%20Anjali&rft.date=2019-07-01&rft.volume=48&rft.issue=7&rft.spage=4335&rft.epage=4341&rft.pages=4335-4341&rft.issn=0361-5235&rft.eissn=1543-186X&rft_id=info:doi/10.1007/s11664-019-07202-w&rft_dat=%3Cproquest%3E2212340722%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2212340722&rft_id=info:pmid/&rfr_iscdi=true