A spatio-semantic approach to reasoning about agricultural processes
Digitization of agricultural processes is advancing fast as telemetry data from the involved machines becomes more and more available. Current approaches commonly have a machine-centric view that does not account for machine-machine or machine-environment relations. In this paper we demonstrate how...
Gespeichert in:
Veröffentlicht in: | Applied intelligence (Dordrecht, Netherlands) Netherlands), 2019-11, Vol.49 (11), p.3821-3833 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3833 |
---|---|
container_issue | 11 |
container_start_page | 3821 |
container_title | Applied intelligence (Dordrecht, Netherlands) |
container_volume | 49 |
creator | Deeken, Henning Wiemann, Thomas Hertzberg, Joachim |
description | Digitization of agricultural processes is advancing fast as telemetry data from the involved machines becomes more and more available. Current approaches commonly have a machine-centric view that does not account for machine-machine or machine-environment relations. In this paper we demonstrate how to model such relations in the generic semantic mapping framework SEMAP. We describe how SEMAP’s core ontology is extended to represent knowledge about the involved machines and facilities in a typical agricultural domain. In the framework we combine different information layers – semantically annotated spatial data, semantic background knowledge and incoming sensor data – to derive qualitative spatial facts and continuously track them to generate process states and events about the ongoing logistic process of a harvesting campaign, which adds to an increased process understanding. |
doi_str_mv | 10.1007/s10489-019-01451-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2212335077</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2212335077</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-adc99baddb8faceac91223c967b28cd8139b78943ffddbdf46f91450ded581763</originalsourceid><addsrcrecordid>eNp9kMtKxDAUhoMoOF5ewFXAdTSXtmmWw3iFATcK7kKay9hhpqk56cK3N2MFdy4OZ_P9_-F8CF0xesMolbfAaNUqQtlhqpoRfoQWrJaCyErJY7SgilekadT7KToD2FJKhaBsge6WGEaT-0jA782Qe4vNOKZo7AfOESdvIA79sMGmi1PGZpN6O-3ylMwOF8x6AA8X6CSYHfjL332O3h7uX1dPZP3y-LxarokVTGVinFWqM851bTDWG6sY58KqRna8ta5lQnWyVZUIoTAuVE1Q5RnqvKtbJhtxjq7n3nL5c_KQ9TZOaSgnNeeMC1FTKQvFZ8qmCJB80GPq9yZ9aUb1wZaebeliS__Y0ryExByCAg8bn_6q_0l9A5p2bmo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2212335077</pqid></control><display><type>article</type><title>A spatio-semantic approach to reasoning about agricultural processes</title><source>Springer Nature - Complete Springer Journals</source><creator>Deeken, Henning ; Wiemann, Thomas ; Hertzberg, Joachim</creator><creatorcontrib>Deeken, Henning ; Wiemann, Thomas ; Hertzberg, Joachim</creatorcontrib><description>Digitization of agricultural processes is advancing fast as telemetry data from the involved machines becomes more and more available. Current approaches commonly have a machine-centric view that does not account for machine-machine or machine-environment relations. In this paper we demonstrate how to model such relations in the generic semantic mapping framework SEMAP. We describe how SEMAP’s core ontology is extended to represent knowledge about the involved machines and facilities in a typical agricultural domain. In the framework we combine different information layers – semantically annotated spatial data, semantic background knowledge and incoming sensor data – to derive qualitative spatial facts and continuously track them to generate process states and events about the ongoing logistic process of a harvesting campaign, which adds to an increased process understanding.</description><identifier>ISSN: 0924-669X</identifier><identifier>EISSN: 1573-7497</identifier><identifier>DOI: 10.1007/s10489-019-01451-2</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Agriculture ; Artificial Intelligence ; Computer Science ; Data analysis ; Digitization ; Harvest ; Harvesting ; Intelligent systems ; Knowledge representation ; Logistics ; Machines ; Manufacturing ; Mapping ; Mechanical Engineering ; Processes ; Qualitative analysis ; Semantics ; Sensors ; Spatial data ; Telemetry</subject><ispartof>Applied intelligence (Dordrecht, Netherlands), 2019-11, Vol.49 (11), p.3821-3833</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>Applied Intelligence is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-adc99baddb8faceac91223c967b28cd8139b78943ffddbdf46f91450ded581763</citedby><cites>FETCH-LOGICAL-c319t-adc99baddb8faceac91223c967b28cd8139b78943ffddbdf46f91450ded581763</cites><orcidid>0000-0001-8442-3534</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10489-019-01451-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10489-019-01451-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Deeken, Henning</creatorcontrib><creatorcontrib>Wiemann, Thomas</creatorcontrib><creatorcontrib>Hertzberg, Joachim</creatorcontrib><title>A spatio-semantic approach to reasoning about agricultural processes</title><title>Applied intelligence (Dordrecht, Netherlands)</title><addtitle>Appl Intell</addtitle><description>Digitization of agricultural processes is advancing fast as telemetry data from the involved machines becomes more and more available. Current approaches commonly have a machine-centric view that does not account for machine-machine or machine-environment relations. In this paper we demonstrate how to model such relations in the generic semantic mapping framework SEMAP. We describe how SEMAP’s core ontology is extended to represent knowledge about the involved machines and facilities in a typical agricultural domain. In the framework we combine different information layers – semantically annotated spatial data, semantic background knowledge and incoming sensor data – to derive qualitative spatial facts and continuously track them to generate process states and events about the ongoing logistic process of a harvesting campaign, which adds to an increased process understanding.</description><subject>Agriculture</subject><subject>Artificial Intelligence</subject><subject>Computer Science</subject><subject>Data analysis</subject><subject>Digitization</subject><subject>Harvest</subject><subject>Harvesting</subject><subject>Intelligent systems</subject><subject>Knowledge representation</subject><subject>Logistics</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Mapping</subject><subject>Mechanical Engineering</subject><subject>Processes</subject><subject>Qualitative analysis</subject><subject>Semantics</subject><subject>Sensors</subject><subject>Spatial data</subject><subject>Telemetry</subject><issn>0924-669X</issn><issn>1573-7497</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kMtKxDAUhoMoOF5ewFXAdTSXtmmWw3iFATcK7kKay9hhpqk56cK3N2MFdy4OZ_P9_-F8CF0xesMolbfAaNUqQtlhqpoRfoQWrJaCyErJY7SgilekadT7KToD2FJKhaBsge6WGEaT-0jA782Qe4vNOKZo7AfOESdvIA79sMGmi1PGZpN6O-3ylMwOF8x6AA8X6CSYHfjL332O3h7uX1dPZP3y-LxarokVTGVinFWqM851bTDWG6sY58KqRna8ta5lQnWyVZUIoTAuVE1Q5RnqvKtbJhtxjq7n3nL5c_KQ9TZOaSgnNeeMC1FTKQvFZ8qmCJB80GPq9yZ9aUb1wZaebeliS__Y0ryExByCAg8bn_6q_0l9A5p2bmo</recordid><startdate>20191101</startdate><enddate>20191101</enddate><creator>Deeken, Henning</creator><creator>Wiemann, Thomas</creator><creator>Hertzberg, Joachim</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0001-8442-3534</orcidid></search><sort><creationdate>20191101</creationdate><title>A spatio-semantic approach to reasoning about agricultural processes</title><author>Deeken, Henning ; Wiemann, Thomas ; Hertzberg, Joachim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-adc99baddb8faceac91223c967b28cd8139b78943ffddbdf46f91450ded581763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Agriculture</topic><topic>Artificial Intelligence</topic><topic>Computer Science</topic><topic>Data analysis</topic><topic>Digitization</topic><topic>Harvest</topic><topic>Harvesting</topic><topic>Intelligent systems</topic><topic>Knowledge representation</topic><topic>Logistics</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Mapping</topic><topic>Mechanical Engineering</topic><topic>Processes</topic><topic>Qualitative analysis</topic><topic>Semantics</topic><topic>Sensors</topic><topic>Spatial data</topic><topic>Telemetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deeken, Henning</creatorcontrib><creatorcontrib>Wiemann, Thomas</creatorcontrib><creatorcontrib>Hertzberg, Joachim</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Applied intelligence (Dordrecht, Netherlands)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Deeken, Henning</au><au>Wiemann, Thomas</au><au>Hertzberg, Joachim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A spatio-semantic approach to reasoning about agricultural processes</atitle><jtitle>Applied intelligence (Dordrecht, Netherlands)</jtitle><stitle>Appl Intell</stitle><date>2019-11-01</date><risdate>2019</risdate><volume>49</volume><issue>11</issue><spage>3821</spage><epage>3833</epage><pages>3821-3833</pages><issn>0924-669X</issn><eissn>1573-7497</eissn><abstract>Digitization of agricultural processes is advancing fast as telemetry data from the involved machines becomes more and more available. Current approaches commonly have a machine-centric view that does not account for machine-machine or machine-environment relations. In this paper we demonstrate how to model such relations in the generic semantic mapping framework SEMAP. We describe how SEMAP’s core ontology is extended to represent knowledge about the involved machines and facilities in a typical agricultural domain. In the framework we combine different information layers – semantically annotated spatial data, semantic background knowledge and incoming sensor data – to derive qualitative spatial facts and continuously track them to generate process states and events about the ongoing logistic process of a harvesting campaign, which adds to an increased process understanding.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10489-019-01451-2</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-8442-3534</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0924-669X |
ispartof | Applied intelligence (Dordrecht, Netherlands), 2019-11, Vol.49 (11), p.3821-3833 |
issn | 0924-669X 1573-7497 |
language | eng |
recordid | cdi_proquest_journals_2212335077 |
source | Springer Nature - Complete Springer Journals |
subjects | Agriculture Artificial Intelligence Computer Science Data analysis Digitization Harvest Harvesting Intelligent systems Knowledge representation Logistics Machines Manufacturing Mapping Mechanical Engineering Processes Qualitative analysis Semantics Sensors Spatial data Telemetry |
title | A spatio-semantic approach to reasoning about agricultural processes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T17%3A44%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20spatio-semantic%20approach%20to%20reasoning%20about%20agricultural%20processes&rft.jtitle=Applied%20intelligence%20(Dordrecht,%20Netherlands)&rft.au=Deeken,%20Henning&rft.date=2019-11-01&rft.volume=49&rft.issue=11&rft.spage=3821&rft.epage=3833&rft.pages=3821-3833&rft.issn=0924-669X&rft.eissn=1573-7497&rft_id=info:doi/10.1007/s10489-019-01451-2&rft_dat=%3Cproquest_cross%3E2212335077%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2212335077&rft_id=info:pmid/&rfr_iscdi=true |