Quantifying Water Balance Components at a Permeable Pavement Site Using a Coupled Groundwater–Surface Water Model
AbstractGreen infrastructure (GI) is being widely implemented in urban areas to capture and remove stormwater from the surface drainage system. Whereas most analyses have focused on diverted surface flow, here the authors demonstrate a method to quantify all components of a hydrologic budget at the...
Gespeichert in:
Veröffentlicht in: | Journal of hydrologic engineering 2019-07, Vol.24 (7) |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 7 |
container_start_page | |
container_title | Journal of hydrologic engineering |
container_volume | 24 |
creator | Barnes, Michael L Welty, Claire |
description | AbstractGreen infrastructure (GI) is being widely implemented in urban areas to capture and remove stormwater from the surface drainage system. Whereas most analyses have focused on diverted surface flow, here the authors demonstrate a method to quantify all components of a hydrologic budget at the site scale. The authors instrumented and applied mathematical modeling to a GI site consisting of a system of tree trenches and permeable pavement in Philadelphia, Pennsylvania. They utilized ParFlow.CLM version 743, a three-dimensional groundwater–surface water–land surface model, to quantify the water budget, including evapotranspiration, infiltration, and recharge to regional groundwater. They compared simulated and observed groundwater levels and analyzed the simulated monthly water balance for the site over 1 year. The authors found that snowmelt was an important source of recharge in the winter months of the 2016 simulation period. During the summer months when evapotranspiration exceeds precipitation, additional water captured by the GI contributing area enhances recharge to groundwater, altering water budget seasonality at the site scale. Simulation results indicate that the GI functioned as intended, converting runoff to recharge, with discharge to regional groundwater throughout the year. |
doi_str_mv | 10.1061/(ASCE)HE.1943-5584.0001789 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2212265687</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2212265687</sourcerecordid><originalsourceid>FETCH-LOGICAL-a376t-91769a102c612de14d7b8f907535125dd48c8f9369621f986c383c02b3a304c03</originalsourceid><addsrcrecordid>eNp1kEtOwzAURSMEEqWwBwsmMEjxJ3FsZhCFFqmIolIxtFzHQanyw05AnbEHdshKcJQCI0b2s--5Tzqed4rgBEGKLs-vl3FyMUsmiAfED0MWTCCEKGJ8zxv9vu27O2SBDynnh96RtRuXCdww8uxjJ6s2z7Z59QKeZasNuJGFrJQGcV02daWr1gLZAgkW2pRargsNFvJNl-4DLPNWg5XtWenyXVPoFExN3VXpe9_19fG57EwmXdvQfV-nujj2DjJZWH2yO8fe6jZ5imf-_GF6F1_PfUki2vocRZRLBLGiCKcaBWm0ZhmHUUhChMM0DZhyM6GcYpRxRhVhREG8JpLAQEEy9s6G3sbUr522rdjUnancSoExwpiGlEUudTWklKmtNToTjclLabYCQdFLFqKXLGaJ6IWKXqjYSXYwHWBplf6r_yH_B78BdhOBKw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2212265687</pqid></control><display><type>article</type><title>Quantifying Water Balance Components at a Permeable Pavement Site Using a Coupled Groundwater–Surface Water Model</title><source>American Society of Civil Engineers:NESLI2:Journals:2014</source><creator>Barnes, Michael L ; Welty, Claire</creator><creatorcontrib>Barnes, Michael L ; Welty, Claire</creatorcontrib><description>AbstractGreen infrastructure (GI) is being widely implemented in urban areas to capture and remove stormwater from the surface drainage system. Whereas most analyses have focused on diverted surface flow, here the authors demonstrate a method to quantify all components of a hydrologic budget at the site scale. The authors instrumented and applied mathematical modeling to a GI site consisting of a system of tree trenches and permeable pavement in Philadelphia, Pennsylvania. They utilized ParFlow.CLM version 743, a three-dimensional groundwater–surface water–land surface model, to quantify the water budget, including evapotranspiration, infiltration, and recharge to regional groundwater. They compared simulated and observed groundwater levels and analyzed the simulated monthly water balance for the site over 1 year. The authors found that snowmelt was an important source of recharge in the winter months of the 2016 simulation period. During the summer months when evapotranspiration exceeds precipitation, additional water captured by the GI contributing area enhances recharge to groundwater, altering water budget seasonality at the site scale. Simulation results indicate that the GI functioned as intended, converting runoff to recharge, with discharge to regional groundwater throughout the year.</description><identifier>ISSN: 1084-0699</identifier><identifier>EISSN: 1943-5584</identifier><identifier>DOI: 10.1061/(ASCE)HE.1943-5584.0001789</identifier><language>eng</language><publisher>New York: American Society of Civil Engineers</publisher><subject>Case Studies ; Case Study ; Civil engineering ; Components ; Computer simulation ; Drainage control ; Drainage systems ; Evapotranspiration ; Fluid dynamics ; Green infrastructure ; Groundwater ; Groundwater levels ; Groundwater recharge ; Groundwater runoff ; Hydrology ; Infiltration ; Land surface models ; Mathematical models ; Modelling ; Pavements ; Permeability ; Physical simulation ; Precipitation ; Runoff ; Seasonal variations ; Seasonality ; Simulation ; Snowmelt ; Storms ; Stormwater ; Surface drainage ; Surface flow ; Surface water ; Surface-groundwater relations ; Three dimensional models ; Urban areas ; Water balance ; Water balance components ; Water budget ; Water resources ; Water table</subject><ispartof>Journal of hydrologic engineering, 2019-07, Vol.24 (7)</ispartof><rights>2019 American Society of Civil Engineers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a376t-91769a102c612de14d7b8f907535125dd48c8f9369621f986c383c02b3a304c03</citedby><cites>FETCH-LOGICAL-a376t-91769a102c612de14d7b8f907535125dd48c8f9369621f986c383c02b3a304c03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttp://ascelibrary.org/doi/pdf/10.1061/(ASCE)HE.1943-5584.0001789$$EPDF$$P50$$Gasce$$H</linktopdf><linktohtml>$$Uhttp://ascelibrary.org/doi/abs/10.1061/(ASCE)HE.1943-5584.0001789$$EHTML$$P50$$Gasce$$H</linktohtml><link.rule.ids>315,782,786,27933,27934,76203,76211</link.rule.ids></links><search><creatorcontrib>Barnes, Michael L</creatorcontrib><creatorcontrib>Welty, Claire</creatorcontrib><title>Quantifying Water Balance Components at a Permeable Pavement Site Using a Coupled Groundwater–Surface Water Model</title><title>Journal of hydrologic engineering</title><description>AbstractGreen infrastructure (GI) is being widely implemented in urban areas to capture and remove stormwater from the surface drainage system. Whereas most analyses have focused on diverted surface flow, here the authors demonstrate a method to quantify all components of a hydrologic budget at the site scale. The authors instrumented and applied mathematical modeling to a GI site consisting of a system of tree trenches and permeable pavement in Philadelphia, Pennsylvania. They utilized ParFlow.CLM version 743, a three-dimensional groundwater–surface water–land surface model, to quantify the water budget, including evapotranspiration, infiltration, and recharge to regional groundwater. They compared simulated and observed groundwater levels and analyzed the simulated monthly water balance for the site over 1 year. The authors found that snowmelt was an important source of recharge in the winter months of the 2016 simulation period. During the summer months when evapotranspiration exceeds precipitation, additional water captured by the GI contributing area enhances recharge to groundwater, altering water budget seasonality at the site scale. Simulation results indicate that the GI functioned as intended, converting runoff to recharge, with discharge to regional groundwater throughout the year.</description><subject>Case Studies</subject><subject>Case Study</subject><subject>Civil engineering</subject><subject>Components</subject><subject>Computer simulation</subject><subject>Drainage control</subject><subject>Drainage systems</subject><subject>Evapotranspiration</subject><subject>Fluid dynamics</subject><subject>Green infrastructure</subject><subject>Groundwater</subject><subject>Groundwater levels</subject><subject>Groundwater recharge</subject><subject>Groundwater runoff</subject><subject>Hydrology</subject><subject>Infiltration</subject><subject>Land surface models</subject><subject>Mathematical models</subject><subject>Modelling</subject><subject>Pavements</subject><subject>Permeability</subject><subject>Physical simulation</subject><subject>Precipitation</subject><subject>Runoff</subject><subject>Seasonal variations</subject><subject>Seasonality</subject><subject>Simulation</subject><subject>Snowmelt</subject><subject>Storms</subject><subject>Stormwater</subject><subject>Surface drainage</subject><subject>Surface flow</subject><subject>Surface water</subject><subject>Surface-groundwater relations</subject><subject>Three dimensional models</subject><subject>Urban areas</subject><subject>Water balance</subject><subject>Water balance components</subject><subject>Water budget</subject><subject>Water resources</subject><subject>Water table</subject><issn>1084-0699</issn><issn>1943-5584</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kEtOwzAURSMEEqWwBwsmMEjxJ3FsZhCFFqmIolIxtFzHQanyw05AnbEHdshKcJQCI0b2s--5Tzqed4rgBEGKLs-vl3FyMUsmiAfED0MWTCCEKGJ8zxv9vu27O2SBDynnh96RtRuXCdww8uxjJ6s2z7Z59QKeZasNuJGFrJQGcV02daWr1gLZAgkW2pRargsNFvJNl-4DLPNWg5XtWenyXVPoFExN3VXpe9_19fG57EwmXdvQfV-nujj2DjJZWH2yO8fe6jZ5imf-_GF6F1_PfUki2vocRZRLBLGiCKcaBWm0ZhmHUUhChMM0DZhyM6GcYpRxRhVhREG8JpLAQEEy9s6G3sbUr522rdjUnancSoExwpiGlEUudTWklKmtNToTjclLabYCQdFLFqKXLGaJ6IWKXqjYSXYwHWBplf6r_yH_B78BdhOBKw</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>Barnes, Michael L</creator><creator>Welty, Claire</creator><general>American Society of Civil Engineers</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope></search><sort><creationdate>20190701</creationdate><title>Quantifying Water Balance Components at a Permeable Pavement Site Using a Coupled Groundwater–Surface Water Model</title><author>Barnes, Michael L ; Welty, Claire</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a376t-91769a102c612de14d7b8f907535125dd48c8f9369621f986c383c02b3a304c03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Case Studies</topic><topic>Case Study</topic><topic>Civil engineering</topic><topic>Components</topic><topic>Computer simulation</topic><topic>Drainage control</topic><topic>Drainage systems</topic><topic>Evapotranspiration</topic><topic>Fluid dynamics</topic><topic>Green infrastructure</topic><topic>Groundwater</topic><topic>Groundwater levels</topic><topic>Groundwater recharge</topic><topic>Groundwater runoff</topic><topic>Hydrology</topic><topic>Infiltration</topic><topic>Land surface models</topic><topic>Mathematical models</topic><topic>Modelling</topic><topic>Pavements</topic><topic>Permeability</topic><topic>Physical simulation</topic><topic>Precipitation</topic><topic>Runoff</topic><topic>Seasonal variations</topic><topic>Seasonality</topic><topic>Simulation</topic><topic>Snowmelt</topic><topic>Storms</topic><topic>Stormwater</topic><topic>Surface drainage</topic><topic>Surface flow</topic><topic>Surface water</topic><topic>Surface-groundwater relations</topic><topic>Three dimensional models</topic><topic>Urban areas</topic><topic>Water balance</topic><topic>Water balance components</topic><topic>Water budget</topic><topic>Water resources</topic><topic>Water table</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barnes, Michael L</creatorcontrib><creatorcontrib>Welty, Claire</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><jtitle>Journal of hydrologic engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barnes, Michael L</au><au>Welty, Claire</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantifying Water Balance Components at a Permeable Pavement Site Using a Coupled Groundwater–Surface Water Model</atitle><jtitle>Journal of hydrologic engineering</jtitle><date>2019-07-01</date><risdate>2019</risdate><volume>24</volume><issue>7</issue><issn>1084-0699</issn><eissn>1943-5584</eissn><abstract>AbstractGreen infrastructure (GI) is being widely implemented in urban areas to capture and remove stormwater from the surface drainage system. Whereas most analyses have focused on diverted surface flow, here the authors demonstrate a method to quantify all components of a hydrologic budget at the site scale. The authors instrumented and applied mathematical modeling to a GI site consisting of a system of tree trenches and permeable pavement in Philadelphia, Pennsylvania. They utilized ParFlow.CLM version 743, a three-dimensional groundwater–surface water–land surface model, to quantify the water budget, including evapotranspiration, infiltration, and recharge to regional groundwater. They compared simulated and observed groundwater levels and analyzed the simulated monthly water balance for the site over 1 year. The authors found that snowmelt was an important source of recharge in the winter months of the 2016 simulation period. During the summer months when evapotranspiration exceeds precipitation, additional water captured by the GI contributing area enhances recharge to groundwater, altering water budget seasonality at the site scale. Simulation results indicate that the GI functioned as intended, converting runoff to recharge, with discharge to regional groundwater throughout the year.</abstract><cop>New York</cop><pub>American Society of Civil Engineers</pub><doi>10.1061/(ASCE)HE.1943-5584.0001789</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1084-0699 |
ispartof | Journal of hydrologic engineering, 2019-07, Vol.24 (7) |
issn | 1084-0699 1943-5584 |
language | eng |
recordid | cdi_proquest_journals_2212265687 |
source | American Society of Civil Engineers:NESLI2:Journals:2014 |
subjects | Case Studies Case Study Civil engineering Components Computer simulation Drainage control Drainage systems Evapotranspiration Fluid dynamics Green infrastructure Groundwater Groundwater levels Groundwater recharge Groundwater runoff Hydrology Infiltration Land surface models Mathematical models Modelling Pavements Permeability Physical simulation Precipitation Runoff Seasonal variations Seasonality Simulation Snowmelt Storms Stormwater Surface drainage Surface flow Surface water Surface-groundwater relations Three dimensional models Urban areas Water balance Water balance components Water budget Water resources Water table |
title | Quantifying Water Balance Components at a Permeable Pavement Site Using a Coupled Groundwater–Surface Water Model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-02T20%3A49%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantifying%20Water%20Balance%20Components%20at%20a%20Permeable%20Pavement%20Site%20Using%20a%20Coupled%20Groundwater%E2%80%93Surface%20Water%20Model&rft.jtitle=Journal%20of%20hydrologic%20engineering&rft.au=Barnes,%20Michael%20L&rft.date=2019-07-01&rft.volume=24&rft.issue=7&rft.issn=1084-0699&rft.eissn=1943-5584&rft_id=info:doi/10.1061/(ASCE)HE.1943-5584.0001789&rft_dat=%3Cproquest_cross%3E2212265687%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2212265687&rft_id=info:pmid/&rfr_iscdi=true |