Quantifying Water Balance Components at a Permeable Pavement Site Using a Coupled Groundwater–Surface Water Model

AbstractGreen infrastructure (GI) is being widely implemented in urban areas to capture and remove stormwater from the surface drainage system. Whereas most analyses have focused on diverted surface flow, here the authors demonstrate a method to quantify all components of a hydrologic budget at the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of hydrologic engineering 2019-07, Vol.24 (7)
Hauptverfasser: Barnes, Michael L, Welty, Claire
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 7
container_start_page
container_title Journal of hydrologic engineering
container_volume 24
creator Barnes, Michael L
Welty, Claire
description AbstractGreen infrastructure (GI) is being widely implemented in urban areas to capture and remove stormwater from the surface drainage system. Whereas most analyses have focused on diverted surface flow, here the authors demonstrate a method to quantify all components of a hydrologic budget at the site scale. The authors instrumented and applied mathematical modeling to a GI site consisting of a system of tree trenches and permeable pavement in Philadelphia, Pennsylvania. They utilized ParFlow.CLM version 743, a three-dimensional groundwater–surface water–land surface model, to quantify the water budget, including evapotranspiration, infiltration, and recharge to regional groundwater. They compared simulated and observed groundwater levels and analyzed the simulated monthly water balance for the site over 1 year. The authors found that snowmelt was an important source of recharge in the winter months of the 2016 simulation period. During the summer months when evapotranspiration exceeds precipitation, additional water captured by the GI contributing area enhances recharge to groundwater, altering water budget seasonality at the site scale. Simulation results indicate that the GI functioned as intended, converting runoff to recharge, with discharge to regional groundwater throughout the year.
doi_str_mv 10.1061/(ASCE)HE.1943-5584.0001789
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2212265687</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2212265687</sourcerecordid><originalsourceid>FETCH-LOGICAL-a376t-91769a102c612de14d7b8f907535125dd48c8f9369621f986c383c02b3a304c03</originalsourceid><addsrcrecordid>eNp1kEtOwzAURSMEEqWwBwsmMEjxJ3FsZhCFFqmIolIxtFzHQanyw05AnbEHdshKcJQCI0b2s--5Tzqed4rgBEGKLs-vl3FyMUsmiAfED0MWTCCEKGJ8zxv9vu27O2SBDynnh96RtRuXCdww8uxjJ6s2z7Z59QKeZasNuJGFrJQGcV02daWr1gLZAgkW2pRargsNFvJNl-4DLPNWg5XtWenyXVPoFExN3VXpe9_19fG57EwmXdvQfV-nujj2DjJZWH2yO8fe6jZ5imf-_GF6F1_PfUki2vocRZRLBLGiCKcaBWm0ZhmHUUhChMM0DZhyM6GcYpRxRhVhREG8JpLAQEEy9s6G3sbUr522rdjUnancSoExwpiGlEUudTWklKmtNToTjclLabYCQdFLFqKXLGaJ6IWKXqjYSXYwHWBplf6r_yH_B78BdhOBKw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2212265687</pqid></control><display><type>article</type><title>Quantifying Water Balance Components at a Permeable Pavement Site Using a Coupled Groundwater–Surface Water Model</title><source>American Society of Civil Engineers:NESLI2:Journals:2014</source><creator>Barnes, Michael L ; Welty, Claire</creator><creatorcontrib>Barnes, Michael L ; Welty, Claire</creatorcontrib><description>AbstractGreen infrastructure (GI) is being widely implemented in urban areas to capture and remove stormwater from the surface drainage system. Whereas most analyses have focused on diverted surface flow, here the authors demonstrate a method to quantify all components of a hydrologic budget at the site scale. The authors instrumented and applied mathematical modeling to a GI site consisting of a system of tree trenches and permeable pavement in Philadelphia, Pennsylvania. They utilized ParFlow.CLM version 743, a three-dimensional groundwater–surface water–land surface model, to quantify the water budget, including evapotranspiration, infiltration, and recharge to regional groundwater. They compared simulated and observed groundwater levels and analyzed the simulated monthly water balance for the site over 1 year. The authors found that snowmelt was an important source of recharge in the winter months of the 2016 simulation period. During the summer months when evapotranspiration exceeds precipitation, additional water captured by the GI contributing area enhances recharge to groundwater, altering water budget seasonality at the site scale. Simulation results indicate that the GI functioned as intended, converting runoff to recharge, with discharge to regional groundwater throughout the year.</description><identifier>ISSN: 1084-0699</identifier><identifier>EISSN: 1943-5584</identifier><identifier>DOI: 10.1061/(ASCE)HE.1943-5584.0001789</identifier><language>eng</language><publisher>New York: American Society of Civil Engineers</publisher><subject>Case Studies ; Case Study ; Civil engineering ; Components ; Computer simulation ; Drainage control ; Drainage systems ; Evapotranspiration ; Fluid dynamics ; Green infrastructure ; Groundwater ; Groundwater levels ; Groundwater recharge ; Groundwater runoff ; Hydrology ; Infiltration ; Land surface models ; Mathematical models ; Modelling ; Pavements ; Permeability ; Physical simulation ; Precipitation ; Runoff ; Seasonal variations ; Seasonality ; Simulation ; Snowmelt ; Storms ; Stormwater ; Surface drainage ; Surface flow ; Surface water ; Surface-groundwater relations ; Three dimensional models ; Urban areas ; Water balance ; Water balance components ; Water budget ; Water resources ; Water table</subject><ispartof>Journal of hydrologic engineering, 2019-07, Vol.24 (7)</ispartof><rights>2019 American Society of Civil Engineers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a376t-91769a102c612de14d7b8f907535125dd48c8f9369621f986c383c02b3a304c03</citedby><cites>FETCH-LOGICAL-a376t-91769a102c612de14d7b8f907535125dd48c8f9369621f986c383c02b3a304c03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttp://ascelibrary.org/doi/pdf/10.1061/(ASCE)HE.1943-5584.0001789$$EPDF$$P50$$Gasce$$H</linktopdf><linktohtml>$$Uhttp://ascelibrary.org/doi/abs/10.1061/(ASCE)HE.1943-5584.0001789$$EHTML$$P50$$Gasce$$H</linktohtml><link.rule.ids>315,782,786,27933,27934,76203,76211</link.rule.ids></links><search><creatorcontrib>Barnes, Michael L</creatorcontrib><creatorcontrib>Welty, Claire</creatorcontrib><title>Quantifying Water Balance Components at a Permeable Pavement Site Using a Coupled Groundwater–Surface Water Model</title><title>Journal of hydrologic engineering</title><description>AbstractGreen infrastructure (GI) is being widely implemented in urban areas to capture and remove stormwater from the surface drainage system. Whereas most analyses have focused on diverted surface flow, here the authors demonstrate a method to quantify all components of a hydrologic budget at the site scale. The authors instrumented and applied mathematical modeling to a GI site consisting of a system of tree trenches and permeable pavement in Philadelphia, Pennsylvania. They utilized ParFlow.CLM version 743, a three-dimensional groundwater–surface water–land surface model, to quantify the water budget, including evapotranspiration, infiltration, and recharge to regional groundwater. They compared simulated and observed groundwater levels and analyzed the simulated monthly water balance for the site over 1 year. The authors found that snowmelt was an important source of recharge in the winter months of the 2016 simulation period. During the summer months when evapotranspiration exceeds precipitation, additional water captured by the GI contributing area enhances recharge to groundwater, altering water budget seasonality at the site scale. Simulation results indicate that the GI functioned as intended, converting runoff to recharge, with discharge to regional groundwater throughout the year.</description><subject>Case Studies</subject><subject>Case Study</subject><subject>Civil engineering</subject><subject>Components</subject><subject>Computer simulation</subject><subject>Drainage control</subject><subject>Drainage systems</subject><subject>Evapotranspiration</subject><subject>Fluid dynamics</subject><subject>Green infrastructure</subject><subject>Groundwater</subject><subject>Groundwater levels</subject><subject>Groundwater recharge</subject><subject>Groundwater runoff</subject><subject>Hydrology</subject><subject>Infiltration</subject><subject>Land surface models</subject><subject>Mathematical models</subject><subject>Modelling</subject><subject>Pavements</subject><subject>Permeability</subject><subject>Physical simulation</subject><subject>Precipitation</subject><subject>Runoff</subject><subject>Seasonal variations</subject><subject>Seasonality</subject><subject>Simulation</subject><subject>Snowmelt</subject><subject>Storms</subject><subject>Stormwater</subject><subject>Surface drainage</subject><subject>Surface flow</subject><subject>Surface water</subject><subject>Surface-groundwater relations</subject><subject>Three dimensional models</subject><subject>Urban areas</subject><subject>Water balance</subject><subject>Water balance components</subject><subject>Water budget</subject><subject>Water resources</subject><subject>Water table</subject><issn>1084-0699</issn><issn>1943-5584</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kEtOwzAURSMEEqWwBwsmMEjxJ3FsZhCFFqmIolIxtFzHQanyw05AnbEHdshKcJQCI0b2s--5Tzqed4rgBEGKLs-vl3FyMUsmiAfED0MWTCCEKGJ8zxv9vu27O2SBDynnh96RtRuXCdww8uxjJ6s2z7Z59QKeZasNuJGFrJQGcV02daWr1gLZAgkW2pRargsNFvJNl-4DLPNWg5XtWenyXVPoFExN3VXpe9_19fG57EwmXdvQfV-nujj2DjJZWH2yO8fe6jZ5imf-_GF6F1_PfUki2vocRZRLBLGiCKcaBWm0ZhmHUUhChMM0DZhyM6GcYpRxRhVhREG8JpLAQEEy9s6G3sbUr522rdjUnancSoExwpiGlEUudTWklKmtNToTjclLabYCQdFLFqKXLGaJ6IWKXqjYSXYwHWBplf6r_yH_B78BdhOBKw</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>Barnes, Michael L</creator><creator>Welty, Claire</creator><general>American Society of Civil Engineers</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope></search><sort><creationdate>20190701</creationdate><title>Quantifying Water Balance Components at a Permeable Pavement Site Using a Coupled Groundwater–Surface Water Model</title><author>Barnes, Michael L ; Welty, Claire</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a376t-91769a102c612de14d7b8f907535125dd48c8f9369621f986c383c02b3a304c03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Case Studies</topic><topic>Case Study</topic><topic>Civil engineering</topic><topic>Components</topic><topic>Computer simulation</topic><topic>Drainage control</topic><topic>Drainage systems</topic><topic>Evapotranspiration</topic><topic>Fluid dynamics</topic><topic>Green infrastructure</topic><topic>Groundwater</topic><topic>Groundwater levels</topic><topic>Groundwater recharge</topic><topic>Groundwater runoff</topic><topic>Hydrology</topic><topic>Infiltration</topic><topic>Land surface models</topic><topic>Mathematical models</topic><topic>Modelling</topic><topic>Pavements</topic><topic>Permeability</topic><topic>Physical simulation</topic><topic>Precipitation</topic><topic>Runoff</topic><topic>Seasonal variations</topic><topic>Seasonality</topic><topic>Simulation</topic><topic>Snowmelt</topic><topic>Storms</topic><topic>Stormwater</topic><topic>Surface drainage</topic><topic>Surface flow</topic><topic>Surface water</topic><topic>Surface-groundwater relations</topic><topic>Three dimensional models</topic><topic>Urban areas</topic><topic>Water balance</topic><topic>Water balance components</topic><topic>Water budget</topic><topic>Water resources</topic><topic>Water table</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barnes, Michael L</creatorcontrib><creatorcontrib>Welty, Claire</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Journal of hydrologic engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barnes, Michael L</au><au>Welty, Claire</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantifying Water Balance Components at a Permeable Pavement Site Using a Coupled Groundwater–Surface Water Model</atitle><jtitle>Journal of hydrologic engineering</jtitle><date>2019-07-01</date><risdate>2019</risdate><volume>24</volume><issue>7</issue><issn>1084-0699</issn><eissn>1943-5584</eissn><abstract>AbstractGreen infrastructure (GI) is being widely implemented in urban areas to capture and remove stormwater from the surface drainage system. Whereas most analyses have focused on diverted surface flow, here the authors demonstrate a method to quantify all components of a hydrologic budget at the site scale. The authors instrumented and applied mathematical modeling to a GI site consisting of a system of tree trenches and permeable pavement in Philadelphia, Pennsylvania. They utilized ParFlow.CLM version 743, a three-dimensional groundwater–surface water–land surface model, to quantify the water budget, including evapotranspiration, infiltration, and recharge to regional groundwater. They compared simulated and observed groundwater levels and analyzed the simulated monthly water balance for the site over 1 year. The authors found that snowmelt was an important source of recharge in the winter months of the 2016 simulation period. During the summer months when evapotranspiration exceeds precipitation, additional water captured by the GI contributing area enhances recharge to groundwater, altering water budget seasonality at the site scale. Simulation results indicate that the GI functioned as intended, converting runoff to recharge, with discharge to regional groundwater throughout the year.</abstract><cop>New York</cop><pub>American Society of Civil Engineers</pub><doi>10.1061/(ASCE)HE.1943-5584.0001789</doi></addata></record>
fulltext fulltext
identifier ISSN: 1084-0699
ispartof Journal of hydrologic engineering, 2019-07, Vol.24 (7)
issn 1084-0699
1943-5584
language eng
recordid cdi_proquest_journals_2212265687
source American Society of Civil Engineers:NESLI2:Journals:2014
subjects Case Studies
Case Study
Civil engineering
Components
Computer simulation
Drainage control
Drainage systems
Evapotranspiration
Fluid dynamics
Green infrastructure
Groundwater
Groundwater levels
Groundwater recharge
Groundwater runoff
Hydrology
Infiltration
Land surface models
Mathematical models
Modelling
Pavements
Permeability
Physical simulation
Precipitation
Runoff
Seasonal variations
Seasonality
Simulation
Snowmelt
Storms
Stormwater
Surface drainage
Surface flow
Surface water
Surface-groundwater relations
Three dimensional models
Urban areas
Water balance
Water balance components
Water budget
Water resources
Water table
title Quantifying Water Balance Components at a Permeable Pavement Site Using a Coupled Groundwater–Surface Water Model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-02T20%3A49%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantifying%20Water%20Balance%20Components%20at%20a%20Permeable%20Pavement%20Site%20Using%20a%20Coupled%20Groundwater%E2%80%93Surface%20Water%20Model&rft.jtitle=Journal%20of%20hydrologic%20engineering&rft.au=Barnes,%20Michael%20L&rft.date=2019-07-01&rft.volume=24&rft.issue=7&rft.issn=1084-0699&rft.eissn=1943-5584&rft_id=info:doi/10.1061/(ASCE)HE.1943-5584.0001789&rft_dat=%3Cproquest_cross%3E2212265687%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2212265687&rft_id=info:pmid/&rfr_iscdi=true