Ore petrology of chromite-PGE mineralization in the Kempirsai ophiolite complex
Summary The platinum group minerals (PGM) in chromite ores of the Kempirsai ophiolite massif, located south of the Ural Mountains, are extremely varied in composition and represented predominantly by alloys, sulfides, arsenides, and sulfosalts of the iridium-group PGE (IPGE). The earlier Ir-Os-Ru al...
Gespeichert in:
Veröffentlicht in: | Mineralogy and petrology 2008-01, Vol.92 (1-2), p.31-58 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 58 |
---|---|
container_issue | 1-2 |
container_start_page | 31 |
container_title | Mineralogy and petrology |
container_volume | 92 |
creator | Distler, V. V. Kryachko, V. V. Yudovskaya, M. A. |
description | Summary
The platinum group minerals (PGM) in chromite ores of the Kempirsai ophiolite massif, located south of the Ural Mountains, are extremely varied in composition and represented predominantly by alloys, sulfides, arsenides, and sulfosalts of the iridium-group PGE (IPGE). The earlier Ir-Os-Ru alloys prevail over the later Cu-Os-Ru, Cu-Ir, Ni-Ir, Ni-Os-Ir-Ru, and Ni-Ru-Os-Fe alloys rich in base metals (BM). The earlier Ru-Os disulfides crystallize coevally with Ir-Os-Ru alloys, whereas the later sulfides are represented by compounds with a variable stoichiometry and a wide miscibility of Ni, Cu, Ir, Rh, Os, and Fe. Phase relations of PGE alloys with PGE-BM alloys, sulfides and sulfoarsenides confirm that deposition of these minerals was defined by a general evolution of PGE fractionation in the mineral-forming system but not by a super-imposed process. The leading mechanism of PGM crystallization is thought to be their dendritic growth during gas-transport reactions from low-density gaseous fluid enriched in PGE.
The representative technological sampling of 0.5 million tons of an ore showed that the average PGE content in chromite ore is 0.71 ppm which leads to an evaluation of the PGE resources to be no less than 250 tons. Hence, the Kempirsai deposit is not only a giant chromium deposit, but also a giant deposit of IPGE: Ir, Ru, and Os. The size parameters of PGM and their aggregates suggests that the PGE may be recoverable in separate concentrates. |
doi_str_mv | 10.1007/s00710-007-0207-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_221225430</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1484116761</sourcerecordid><originalsourceid>FETCH-LOGICAL-a404t-cfbe437ec5d45da24acfecbf6c73562fbf5c822e0d644be189833864fb53a5553</originalsourceid><addsrcrecordid>eNp1kE9LAzEQxYMoWKsfwFvwvpq_u-lRSq1ioR70HLLppE3Z3azJFqyf3pQVPHl5MzC_9wYeQreU3FNCqoeUhZIia0FYFn6GJlRwVVBaqnM0ITOerxVRl-gqpT0hRElFJ2i9joB7GGJowvaIg8N2F0PrByjelgvc-g6iafy3GXzosO_wsAP8Cm3vYzIeh37nQ5NpbEPbN_B1jS6caRLc_M4p-nhavM-fi9V6-TJ_XBVGEDEU1tUgeAVWboTcGCaMdWBrV9qKy5K52kmrGAOyKYWogaqZ4lyVwtWSGykln6K7MbeP4fMAadD7cIhdfqkZo4xJwUmG6AjZGFKK4HQffWviUVOiT7XpsTZ9Wk-1aZ49bPSkzHZbiH_B_5t-AJ_CcG0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>221225430</pqid></control><display><type>article</type><title>Ore petrology of chromite-PGE mineralization in the Kempirsai ophiolite complex</title><source>SpringerLink Journals - AutoHoldings</source><creator>Distler, V. V. ; Kryachko, V. V. ; Yudovskaya, M. A.</creator><creatorcontrib>Distler, V. V. ; Kryachko, V. V. ; Yudovskaya, M. A.</creatorcontrib><description>Summary
The platinum group minerals (PGM) in chromite ores of the Kempirsai ophiolite massif, located south of the Ural Mountains, are extremely varied in composition and represented predominantly by alloys, sulfides, arsenides, and sulfosalts of the iridium-group PGE (IPGE). The earlier Ir-Os-Ru alloys prevail over the later Cu-Os-Ru, Cu-Ir, Ni-Ir, Ni-Os-Ir-Ru, and Ni-Ru-Os-Fe alloys rich in base metals (BM). The earlier Ru-Os disulfides crystallize coevally with Ir-Os-Ru alloys, whereas the later sulfides are represented by compounds with a variable stoichiometry and a wide miscibility of Ni, Cu, Ir, Rh, Os, and Fe. Phase relations of PGE alloys with PGE-BM alloys, sulfides and sulfoarsenides confirm that deposition of these minerals was defined by a general evolution of PGE fractionation in the mineral-forming system but not by a super-imposed process. The leading mechanism of PGM crystallization is thought to be their dendritic growth during gas-transport reactions from low-density gaseous fluid enriched in PGE.
The representative technological sampling of 0.5 million tons of an ore showed that the average PGE content in chromite ore is 0.71 ppm which leads to an evaluation of the PGE resources to be no less than 250 tons. Hence, the Kempirsai deposit is not only a giant chromium deposit, but also a giant deposit of IPGE: Ir, Ru, and Os. The size parameters of PGM and their aggregates suggests that the PGE may be recoverable in separate concentrates.</description><identifier>ISSN: 0930-0708</identifier><identifier>EISSN: 1438-1168</identifier><identifier>DOI: 10.1007/s00710-007-0207-3</identifier><language>eng</language><publisher>Vienna: Springer-Verlag</publisher><subject>Alloys ; Chromium ; Crystallization ; Earth and Environmental Science ; Earth Sciences ; Fractionation ; Geochemistry ; Geology ; Inorganic Chemistry ; Iridium ; Mineralization ; Mineralogy ; Minerals ; Mountains ; Petrology ; Platinum ; Sulfides</subject><ispartof>Mineralogy and petrology, 2008-01, Vol.92 (1-2), p.31-58</ispartof><rights>Springer-Verlag 2007</rights><rights>Springer-Verlag 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a404t-cfbe437ec5d45da24acfecbf6c73562fbf5c822e0d644be189833864fb53a5553</citedby><cites>FETCH-LOGICAL-a404t-cfbe437ec5d45da24acfecbf6c73562fbf5c822e0d644be189833864fb53a5553</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00710-007-0207-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00710-007-0207-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Distler, V. V.</creatorcontrib><creatorcontrib>Kryachko, V. V.</creatorcontrib><creatorcontrib>Yudovskaya, M. A.</creatorcontrib><title>Ore petrology of chromite-PGE mineralization in the Kempirsai ophiolite complex</title><title>Mineralogy and petrology</title><addtitle>Mineralogy and Petrology</addtitle><description>Summary
The platinum group minerals (PGM) in chromite ores of the Kempirsai ophiolite massif, located south of the Ural Mountains, are extremely varied in composition and represented predominantly by alloys, sulfides, arsenides, and sulfosalts of the iridium-group PGE (IPGE). The earlier Ir-Os-Ru alloys prevail over the later Cu-Os-Ru, Cu-Ir, Ni-Ir, Ni-Os-Ir-Ru, and Ni-Ru-Os-Fe alloys rich in base metals (BM). The earlier Ru-Os disulfides crystallize coevally with Ir-Os-Ru alloys, whereas the later sulfides are represented by compounds with a variable stoichiometry and a wide miscibility of Ni, Cu, Ir, Rh, Os, and Fe. Phase relations of PGE alloys with PGE-BM alloys, sulfides and sulfoarsenides confirm that deposition of these minerals was defined by a general evolution of PGE fractionation in the mineral-forming system but not by a super-imposed process. The leading mechanism of PGM crystallization is thought to be their dendritic growth during gas-transport reactions from low-density gaseous fluid enriched in PGE.
The representative technological sampling of 0.5 million tons of an ore showed that the average PGE content in chromite ore is 0.71 ppm which leads to an evaluation of the PGE resources to be no less than 250 tons. Hence, the Kempirsai deposit is not only a giant chromium deposit, but also a giant deposit of IPGE: Ir, Ru, and Os. The size parameters of PGM and their aggregates suggests that the PGE may be recoverable in separate concentrates.</description><subject>Alloys</subject><subject>Chromium</subject><subject>Crystallization</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Fractionation</subject><subject>Geochemistry</subject><subject>Geology</subject><subject>Inorganic Chemistry</subject><subject>Iridium</subject><subject>Mineralization</subject><subject>Mineralogy</subject><subject>Minerals</subject><subject>Mountains</subject><subject>Petrology</subject><subject>Platinum</subject><subject>Sulfides</subject><issn>0930-0708</issn><issn>1438-1168</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kE9LAzEQxYMoWKsfwFvwvpq_u-lRSq1ioR70HLLppE3Z3azJFqyf3pQVPHl5MzC_9wYeQreU3FNCqoeUhZIia0FYFn6GJlRwVVBaqnM0ITOerxVRl-gqpT0hRElFJ2i9joB7GGJowvaIg8N2F0PrByjelgvc-g6iafy3GXzosO_wsAP8Cm3vYzIeh37nQ5NpbEPbN_B1jS6caRLc_M4p-nhavM-fi9V6-TJ_XBVGEDEU1tUgeAVWboTcGCaMdWBrV9qKy5K52kmrGAOyKYWogaqZ4lyVwtWSGykln6K7MbeP4fMAadD7cIhdfqkZo4xJwUmG6AjZGFKK4HQffWviUVOiT7XpsTZ9Wk-1aZ49bPSkzHZbiH_B_5t-AJ_CcG0</recordid><startdate>20080101</startdate><enddate>20080101</enddate><creator>Distler, V. V.</creator><creator>Kryachko, V. V.</creator><creator>Yudovskaya, M. A.</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H96</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>20080101</creationdate><title>Ore petrology of chromite-PGE mineralization in the Kempirsai ophiolite complex</title><author>Distler, V. V. ; Kryachko, V. V. ; Yudovskaya, M. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a404t-cfbe437ec5d45da24acfecbf6c73562fbf5c822e0d644be189833864fb53a5553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Alloys</topic><topic>Chromium</topic><topic>Crystallization</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Fractionation</topic><topic>Geochemistry</topic><topic>Geology</topic><topic>Inorganic Chemistry</topic><topic>Iridium</topic><topic>Mineralization</topic><topic>Mineralogy</topic><topic>Minerals</topic><topic>Mountains</topic><topic>Petrology</topic><topic>Platinum</topic><topic>Sulfides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Distler, V. V.</creatorcontrib><creatorcontrib>Kryachko, V. V.</creatorcontrib><creatorcontrib>Yudovskaya, M. A.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>https://resources.nclive.org/materials</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Research Library</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Mineralogy and petrology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Distler, V. V.</au><au>Kryachko, V. V.</au><au>Yudovskaya, M. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ore petrology of chromite-PGE mineralization in the Kempirsai ophiolite complex</atitle><jtitle>Mineralogy and petrology</jtitle><stitle>Mineralogy and Petrology</stitle><date>2008-01-01</date><risdate>2008</risdate><volume>92</volume><issue>1-2</issue><spage>31</spage><epage>58</epage><pages>31-58</pages><issn>0930-0708</issn><eissn>1438-1168</eissn><abstract>Summary
The platinum group minerals (PGM) in chromite ores of the Kempirsai ophiolite massif, located south of the Ural Mountains, are extremely varied in composition and represented predominantly by alloys, sulfides, arsenides, and sulfosalts of the iridium-group PGE (IPGE). The earlier Ir-Os-Ru alloys prevail over the later Cu-Os-Ru, Cu-Ir, Ni-Ir, Ni-Os-Ir-Ru, and Ni-Ru-Os-Fe alloys rich in base metals (BM). The earlier Ru-Os disulfides crystallize coevally with Ir-Os-Ru alloys, whereas the later sulfides are represented by compounds with a variable stoichiometry and a wide miscibility of Ni, Cu, Ir, Rh, Os, and Fe. Phase relations of PGE alloys with PGE-BM alloys, sulfides and sulfoarsenides confirm that deposition of these minerals was defined by a general evolution of PGE fractionation in the mineral-forming system but not by a super-imposed process. The leading mechanism of PGM crystallization is thought to be their dendritic growth during gas-transport reactions from low-density gaseous fluid enriched in PGE.
The representative technological sampling of 0.5 million tons of an ore showed that the average PGE content in chromite ore is 0.71 ppm which leads to an evaluation of the PGE resources to be no less than 250 tons. Hence, the Kempirsai deposit is not only a giant chromium deposit, but also a giant deposit of IPGE: Ir, Ru, and Os. The size parameters of PGM and their aggregates suggests that the PGE may be recoverable in separate concentrates.</abstract><cop>Vienna</cop><pub>Springer-Verlag</pub><doi>10.1007/s00710-007-0207-3</doi><tpages>28</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0930-0708 |
ispartof | Mineralogy and petrology, 2008-01, Vol.92 (1-2), p.31-58 |
issn | 0930-0708 1438-1168 |
language | eng |
recordid | cdi_proquest_journals_221225430 |
source | SpringerLink Journals - AutoHoldings |
subjects | Alloys Chromium Crystallization Earth and Environmental Science Earth Sciences Fractionation Geochemistry Geology Inorganic Chemistry Iridium Mineralization Mineralogy Minerals Mountains Petrology Platinum Sulfides |
title | Ore petrology of chromite-PGE mineralization in the Kempirsai ophiolite complex |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T18%3A52%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ore%20petrology%20of%20chromite-PGE%20mineralization%20in%20the%20Kempirsai%20ophiolite%20complex&rft.jtitle=Mineralogy%20and%20petrology&rft.au=Distler,%20V.%20V.&rft.date=2008-01-01&rft.volume=92&rft.issue=1-2&rft.spage=31&rft.epage=58&rft.pages=31-58&rft.issn=0930-0708&rft.eissn=1438-1168&rft_id=info:doi/10.1007/s00710-007-0207-3&rft_dat=%3Cproquest_cross%3E1484116761%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=221225430&rft_id=info:pmid/&rfr_iscdi=true |