Ore petrology of chromite-PGE mineralization in the Kempirsai ophiolite complex

Summary The platinum group minerals (PGM) in chromite ores of the Kempirsai ophiolite massif, located south of the Ural Mountains, are extremely varied in composition and represented predominantly by alloys, sulfides, arsenides, and sulfosalts of the iridium-group PGE (IPGE). The earlier Ir-Os-Ru al...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mineralogy and petrology 2008-01, Vol.92 (1-2), p.31-58
Hauptverfasser: Distler, V. V., Kryachko, V. V., Yudovskaya, M. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 58
container_issue 1-2
container_start_page 31
container_title Mineralogy and petrology
container_volume 92
creator Distler, V. V.
Kryachko, V. V.
Yudovskaya, M. A.
description Summary The platinum group minerals (PGM) in chromite ores of the Kempirsai ophiolite massif, located south of the Ural Mountains, are extremely varied in composition and represented predominantly by alloys, sulfides, arsenides, and sulfosalts of the iridium-group PGE (IPGE). The earlier Ir-Os-Ru alloys prevail over the later Cu-Os-Ru, Cu-Ir, Ni-Ir, Ni-Os-Ir-Ru, and Ni-Ru-Os-Fe alloys rich in base metals (BM). The earlier Ru-Os disulfides crystallize coevally with Ir-Os-Ru alloys, whereas the later sulfides are represented by compounds with a variable stoichiometry and a wide miscibility of Ni, Cu, Ir, Rh, Os, and Fe. Phase relations of PGE alloys with PGE-BM alloys, sulfides and sulfoarsenides confirm that deposition of these minerals was defined by a general evolution of PGE fractionation in the mineral-forming system but not by a super-imposed process. The leading mechanism of PGM crystallization is thought to be their dendritic growth during gas-transport reactions from low-density gaseous fluid enriched in PGE. The representative technological sampling of 0.5 million tons of an ore showed that the average PGE content in chromite ore is 0.71 ppm which leads to an evaluation of the PGE resources to be no less than 250 tons. Hence, the Kempirsai deposit is not only a giant chromium deposit, but also a giant deposit of IPGE: Ir, Ru, and Os. The size parameters of PGM and their aggregates suggests that the PGE may be recoverable in separate concentrates.
doi_str_mv 10.1007/s00710-007-0207-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_221225430</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1484116761</sourcerecordid><originalsourceid>FETCH-LOGICAL-a404t-cfbe437ec5d45da24acfecbf6c73562fbf5c822e0d644be189833864fb53a5553</originalsourceid><addsrcrecordid>eNp1kE9LAzEQxYMoWKsfwFvwvpq_u-lRSq1ioR70HLLppE3Z3azJFqyf3pQVPHl5MzC_9wYeQreU3FNCqoeUhZIia0FYFn6GJlRwVVBaqnM0ITOerxVRl-gqpT0hRElFJ2i9joB7GGJowvaIg8N2F0PrByjelgvc-g6iafy3GXzosO_wsAP8Cm3vYzIeh37nQ5NpbEPbN_B1jS6caRLc_M4p-nhavM-fi9V6-TJ_XBVGEDEU1tUgeAVWboTcGCaMdWBrV9qKy5K52kmrGAOyKYWogaqZ4lyVwtWSGykln6K7MbeP4fMAadD7cIhdfqkZo4xJwUmG6AjZGFKK4HQffWviUVOiT7XpsTZ9Wk-1aZ49bPSkzHZbiH_B_5t-AJ_CcG0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>221225430</pqid></control><display><type>article</type><title>Ore petrology of chromite-PGE mineralization in the Kempirsai ophiolite complex</title><source>SpringerLink Journals - AutoHoldings</source><creator>Distler, V. V. ; Kryachko, V. V. ; Yudovskaya, M. A.</creator><creatorcontrib>Distler, V. V. ; Kryachko, V. V. ; Yudovskaya, M. A.</creatorcontrib><description>Summary The platinum group minerals (PGM) in chromite ores of the Kempirsai ophiolite massif, located south of the Ural Mountains, are extremely varied in composition and represented predominantly by alloys, sulfides, arsenides, and sulfosalts of the iridium-group PGE (IPGE). The earlier Ir-Os-Ru alloys prevail over the later Cu-Os-Ru, Cu-Ir, Ni-Ir, Ni-Os-Ir-Ru, and Ni-Ru-Os-Fe alloys rich in base metals (BM). The earlier Ru-Os disulfides crystallize coevally with Ir-Os-Ru alloys, whereas the later sulfides are represented by compounds with a variable stoichiometry and a wide miscibility of Ni, Cu, Ir, Rh, Os, and Fe. Phase relations of PGE alloys with PGE-BM alloys, sulfides and sulfoarsenides confirm that deposition of these minerals was defined by a general evolution of PGE fractionation in the mineral-forming system but not by a super-imposed process. The leading mechanism of PGM crystallization is thought to be their dendritic growth during gas-transport reactions from low-density gaseous fluid enriched in PGE. The representative technological sampling of 0.5 million tons of an ore showed that the average PGE content in chromite ore is 0.71 ppm which leads to an evaluation of the PGE resources to be no less than 250 tons. Hence, the Kempirsai deposit is not only a giant chromium deposit, but also a giant deposit of IPGE: Ir, Ru, and Os. The size parameters of PGM and their aggregates suggests that the PGE may be recoverable in separate concentrates.</description><identifier>ISSN: 0930-0708</identifier><identifier>EISSN: 1438-1168</identifier><identifier>DOI: 10.1007/s00710-007-0207-3</identifier><language>eng</language><publisher>Vienna: Springer-Verlag</publisher><subject>Alloys ; Chromium ; Crystallization ; Earth and Environmental Science ; Earth Sciences ; Fractionation ; Geochemistry ; Geology ; Inorganic Chemistry ; Iridium ; Mineralization ; Mineralogy ; Minerals ; Mountains ; Petrology ; Platinum ; Sulfides</subject><ispartof>Mineralogy and petrology, 2008-01, Vol.92 (1-2), p.31-58</ispartof><rights>Springer-Verlag 2007</rights><rights>Springer-Verlag 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a404t-cfbe437ec5d45da24acfecbf6c73562fbf5c822e0d644be189833864fb53a5553</citedby><cites>FETCH-LOGICAL-a404t-cfbe437ec5d45da24acfecbf6c73562fbf5c822e0d644be189833864fb53a5553</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00710-007-0207-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00710-007-0207-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Distler, V. V.</creatorcontrib><creatorcontrib>Kryachko, V. V.</creatorcontrib><creatorcontrib>Yudovskaya, M. A.</creatorcontrib><title>Ore petrology of chromite-PGE mineralization in the Kempirsai ophiolite complex</title><title>Mineralogy and petrology</title><addtitle>Mineralogy and Petrology</addtitle><description>Summary The platinum group minerals (PGM) in chromite ores of the Kempirsai ophiolite massif, located south of the Ural Mountains, are extremely varied in composition and represented predominantly by alloys, sulfides, arsenides, and sulfosalts of the iridium-group PGE (IPGE). The earlier Ir-Os-Ru alloys prevail over the later Cu-Os-Ru, Cu-Ir, Ni-Ir, Ni-Os-Ir-Ru, and Ni-Ru-Os-Fe alloys rich in base metals (BM). The earlier Ru-Os disulfides crystallize coevally with Ir-Os-Ru alloys, whereas the later sulfides are represented by compounds with a variable stoichiometry and a wide miscibility of Ni, Cu, Ir, Rh, Os, and Fe. Phase relations of PGE alloys with PGE-BM alloys, sulfides and sulfoarsenides confirm that deposition of these minerals was defined by a general evolution of PGE fractionation in the mineral-forming system but not by a super-imposed process. The leading mechanism of PGM crystallization is thought to be their dendritic growth during gas-transport reactions from low-density gaseous fluid enriched in PGE. The representative technological sampling of 0.5 million tons of an ore showed that the average PGE content in chromite ore is 0.71 ppm which leads to an evaluation of the PGE resources to be no less than 250 tons. Hence, the Kempirsai deposit is not only a giant chromium deposit, but also a giant deposit of IPGE: Ir, Ru, and Os. The size parameters of PGM and their aggregates suggests that the PGE may be recoverable in separate concentrates.</description><subject>Alloys</subject><subject>Chromium</subject><subject>Crystallization</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Fractionation</subject><subject>Geochemistry</subject><subject>Geology</subject><subject>Inorganic Chemistry</subject><subject>Iridium</subject><subject>Mineralization</subject><subject>Mineralogy</subject><subject>Minerals</subject><subject>Mountains</subject><subject>Petrology</subject><subject>Platinum</subject><subject>Sulfides</subject><issn>0930-0708</issn><issn>1438-1168</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kE9LAzEQxYMoWKsfwFvwvpq_u-lRSq1ioR70HLLppE3Z3azJFqyf3pQVPHl5MzC_9wYeQreU3FNCqoeUhZIia0FYFn6GJlRwVVBaqnM0ITOerxVRl-gqpT0hRElFJ2i9joB7GGJowvaIg8N2F0PrByjelgvc-g6iafy3GXzosO_wsAP8Cm3vYzIeh37nQ5NpbEPbN_B1jS6caRLc_M4p-nhavM-fi9V6-TJ_XBVGEDEU1tUgeAVWboTcGCaMdWBrV9qKy5K52kmrGAOyKYWogaqZ4lyVwtWSGykln6K7MbeP4fMAadD7cIhdfqkZo4xJwUmG6AjZGFKK4HQffWviUVOiT7XpsTZ9Wk-1aZ49bPSkzHZbiH_B_5t-AJ_CcG0</recordid><startdate>20080101</startdate><enddate>20080101</enddate><creator>Distler, V. V.</creator><creator>Kryachko, V. V.</creator><creator>Yudovskaya, M. A.</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H96</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>20080101</creationdate><title>Ore petrology of chromite-PGE mineralization in the Kempirsai ophiolite complex</title><author>Distler, V. V. ; Kryachko, V. V. ; Yudovskaya, M. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a404t-cfbe437ec5d45da24acfecbf6c73562fbf5c822e0d644be189833864fb53a5553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Alloys</topic><topic>Chromium</topic><topic>Crystallization</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Fractionation</topic><topic>Geochemistry</topic><topic>Geology</topic><topic>Inorganic Chemistry</topic><topic>Iridium</topic><topic>Mineralization</topic><topic>Mineralogy</topic><topic>Minerals</topic><topic>Mountains</topic><topic>Petrology</topic><topic>Platinum</topic><topic>Sulfides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Distler, V. V.</creatorcontrib><creatorcontrib>Kryachko, V. V.</creatorcontrib><creatorcontrib>Yudovskaya, M. A.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>https://resources.nclive.org/materials</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Research Library</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Mineralogy and petrology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Distler, V. V.</au><au>Kryachko, V. V.</au><au>Yudovskaya, M. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ore petrology of chromite-PGE mineralization in the Kempirsai ophiolite complex</atitle><jtitle>Mineralogy and petrology</jtitle><stitle>Mineralogy and Petrology</stitle><date>2008-01-01</date><risdate>2008</risdate><volume>92</volume><issue>1-2</issue><spage>31</spage><epage>58</epage><pages>31-58</pages><issn>0930-0708</issn><eissn>1438-1168</eissn><abstract>Summary The platinum group minerals (PGM) in chromite ores of the Kempirsai ophiolite massif, located south of the Ural Mountains, are extremely varied in composition and represented predominantly by alloys, sulfides, arsenides, and sulfosalts of the iridium-group PGE (IPGE). The earlier Ir-Os-Ru alloys prevail over the later Cu-Os-Ru, Cu-Ir, Ni-Ir, Ni-Os-Ir-Ru, and Ni-Ru-Os-Fe alloys rich in base metals (BM). The earlier Ru-Os disulfides crystallize coevally with Ir-Os-Ru alloys, whereas the later sulfides are represented by compounds with a variable stoichiometry and a wide miscibility of Ni, Cu, Ir, Rh, Os, and Fe. Phase relations of PGE alloys with PGE-BM alloys, sulfides and sulfoarsenides confirm that deposition of these minerals was defined by a general evolution of PGE fractionation in the mineral-forming system but not by a super-imposed process. The leading mechanism of PGM crystallization is thought to be their dendritic growth during gas-transport reactions from low-density gaseous fluid enriched in PGE. The representative technological sampling of 0.5 million tons of an ore showed that the average PGE content in chromite ore is 0.71 ppm which leads to an evaluation of the PGE resources to be no less than 250 tons. Hence, the Kempirsai deposit is not only a giant chromium deposit, but also a giant deposit of IPGE: Ir, Ru, and Os. The size parameters of PGM and their aggregates suggests that the PGE may be recoverable in separate concentrates.</abstract><cop>Vienna</cop><pub>Springer-Verlag</pub><doi>10.1007/s00710-007-0207-3</doi><tpages>28</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0930-0708
ispartof Mineralogy and petrology, 2008-01, Vol.92 (1-2), p.31-58
issn 0930-0708
1438-1168
language eng
recordid cdi_proquest_journals_221225430
source SpringerLink Journals - AutoHoldings
subjects Alloys
Chromium
Crystallization
Earth and Environmental Science
Earth Sciences
Fractionation
Geochemistry
Geology
Inorganic Chemistry
Iridium
Mineralization
Mineralogy
Minerals
Mountains
Petrology
Platinum
Sulfides
title Ore petrology of chromite-PGE mineralization in the Kempirsai ophiolite complex
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T18%3A52%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ore%20petrology%20of%20chromite-PGE%20mineralization%20in%20the%20Kempirsai%20ophiolite%20complex&rft.jtitle=Mineralogy%20and%20petrology&rft.au=Distler,%20V.%20V.&rft.date=2008-01-01&rft.volume=92&rft.issue=1-2&rft.spage=31&rft.epage=58&rft.pages=31-58&rft.issn=0930-0708&rft.eissn=1438-1168&rft_id=info:doi/10.1007/s00710-007-0207-3&rft_dat=%3Cproquest_cross%3E1484116761%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=221225430&rft_id=info:pmid/&rfr_iscdi=true