Merging of Rotating Bose–Einstein Condensates

Merging of isolated Bose–Einstein condensates (BECs) is an important topic due to its relevance to matter-wave interferometry and the Kibble–Zurek mechanism. Many past research focused on merging of BECs with uniform initial phases. In our recent brief report (Kanai et al. in Phys Rev A 97:013612, 2...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of low temperature physics 2019-04, Vol.195 (1-2), p.37-50
Hauptverfasser: Kanai, Toshiaki, Guo, Wei, Tsubota, Makoto
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 50
container_issue 1-2
container_start_page 37
container_title Journal of low temperature physics
container_volume 195
creator Kanai, Toshiaki
Guo, Wei
Tsubota, Makoto
description Merging of isolated Bose–Einstein condensates (BECs) is an important topic due to its relevance to matter-wave interferometry and the Kibble–Zurek mechanism. Many past research focused on merging of BECs with uniform initial phases. In our recent brief report (Kanai et al. in Phys Rev A 97:013612, 2018 ), we showed that upon merging of rotating BECs with non-uniform initial phases, spiral-shaped dark solitons can emerge. These solitons facilitate angular momentum transfer and allow the merged condensate to rotate even in the absence of quantized vortices. More strikingly, the sharp endpoints of these spiral solitons can induce rotational motion in the BECs like vortices but with effectively a fraction of a quantized circulation. This paper reports our systematic study on the merging dynamics of rotating BECs. We discuss how the relative winding number of the rotating BECs and the potential barrier that initially separates the BECs may affect the profile and dynamics of the spiral solitons. The number of spiral solitons created in the BECs is observed to always match exactly the relative winding number of the two BECs. The underlying mechanism for which the solitons can break up to form sharp endpoints with peculiar physical properties and why the number of solitons matches the relative winding number is identified and explained. These results improve our understanding of soliton dynamics, which may allow better manipulation of these non-topological phase defects when they are involved in various quantum transport processes.
doi_str_mv 10.1007/s10909-018-2110-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2211605186</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2211605186</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-6750291f3b50b4e4f28ce42210252d24f90039700c6188acfd7fed09e55598033</originalsourceid><addsrcrecordid>eNp1kMtKxDAUhoMoOFYfwF3BdZxzkqZJljqMFxgRRNeh0yalgyZj0lm48x18Q5_EDBVcuTr_4r8cPkLOES4RQM4TggZNARVliEDxgMxQSE4lF_KQzAAYo4xpPCYnKW0AQKuaz8j8wcZ-8H0ZXPkUxmbc6-uQ7Pfn13LwabSDLxfBd9anZrTplBy55jXZs99bkJeb5fPijq4eb-8XVyvacsVGWksBeczxtYB1ZSvHVGsrxhCYYB2rnAbgWgK0NSrVtK6TznagrRBCK-C8IBdT7zaG951No9mEXfR50uQWrEFg_r8gOLnaGFKK1pltHN6a-GEQzJ6LmbiYzMXsuRjMGTZlUvb63sa_5v9DP0gXY4Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2211605186</pqid></control><display><type>article</type><title>Merging of Rotating Bose–Einstein Condensates</title><source>SpringerLink Journals</source><creator>Kanai, Toshiaki ; Guo, Wei ; Tsubota, Makoto</creator><creatorcontrib>Kanai, Toshiaki ; Guo, Wei ; Tsubota, Makoto</creatorcontrib><description>Merging of isolated Bose–Einstein condensates (BECs) is an important topic due to its relevance to matter-wave interferometry and the Kibble–Zurek mechanism. Many past research focused on merging of BECs with uniform initial phases. In our recent brief report (Kanai et al. in Phys Rev A 97:013612, 2018 ), we showed that upon merging of rotating BECs with non-uniform initial phases, spiral-shaped dark solitons can emerge. These solitons facilitate angular momentum transfer and allow the merged condensate to rotate even in the absence of quantized vortices. More strikingly, the sharp endpoints of these spiral solitons can induce rotational motion in the BECs like vortices but with effectively a fraction of a quantized circulation. This paper reports our systematic study on the merging dynamics of rotating BECs. We discuss how the relative winding number of the rotating BECs and the potential barrier that initially separates the BECs may affect the profile and dynamics of the spiral solitons. The number of spiral solitons created in the BECs is observed to always match exactly the relative winding number of the two BECs. The underlying mechanism for which the solitons can break up to form sharp endpoints with peculiar physical properties and why the number of solitons matches the relative winding number is identified and explained. These results improve our understanding of soliton dynamics, which may allow better manipulation of these non-topological phase defects when they are involved in various quantum transport processes.</description><identifier>ISSN: 0022-2291</identifier><identifier>EISSN: 1573-7357</identifier><identifier>DOI: 10.1007/s10909-018-2110-1</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Angular momentum ; Bose-Einstein condensates ; Characterization and Evaluation of Materials ; Condensates ; Condensed Matter Physics ; Low temperature physics ; Magnetic Materials ; Magnetism ; Momentum transfer ; Physical properties ; Physics ; Physics and Astronomy ; Potential barriers ; Quantum transport ; Rotation ; Solitary waves ; Vortices ; Winding</subject><ispartof>Journal of low temperature physics, 2019-04, Vol.195 (1-2), p.37-50</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-6750291f3b50b4e4f28ce42210252d24f90039700c6188acfd7fed09e55598033</citedby><cites>FETCH-LOGICAL-c382t-6750291f3b50b4e4f28ce42210252d24f90039700c6188acfd7fed09e55598033</cites><orcidid>0000-0002-9446-2497 ; 0000-0002-9466-3213</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10909-018-2110-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10909-018-2110-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Kanai, Toshiaki</creatorcontrib><creatorcontrib>Guo, Wei</creatorcontrib><creatorcontrib>Tsubota, Makoto</creatorcontrib><title>Merging of Rotating Bose–Einstein Condensates</title><title>Journal of low temperature physics</title><addtitle>J Low Temp Phys</addtitle><description>Merging of isolated Bose–Einstein condensates (BECs) is an important topic due to its relevance to matter-wave interferometry and the Kibble–Zurek mechanism. Many past research focused on merging of BECs with uniform initial phases. In our recent brief report (Kanai et al. in Phys Rev A 97:013612, 2018 ), we showed that upon merging of rotating BECs with non-uniform initial phases, spiral-shaped dark solitons can emerge. These solitons facilitate angular momentum transfer and allow the merged condensate to rotate even in the absence of quantized vortices. More strikingly, the sharp endpoints of these spiral solitons can induce rotational motion in the BECs like vortices but with effectively a fraction of a quantized circulation. This paper reports our systematic study on the merging dynamics of rotating BECs. We discuss how the relative winding number of the rotating BECs and the potential barrier that initially separates the BECs may affect the profile and dynamics of the spiral solitons. The number of spiral solitons created in the BECs is observed to always match exactly the relative winding number of the two BECs. The underlying mechanism for which the solitons can break up to form sharp endpoints with peculiar physical properties and why the number of solitons matches the relative winding number is identified and explained. These results improve our understanding of soliton dynamics, which may allow better manipulation of these non-topological phase defects when they are involved in various quantum transport processes.</description><subject>Angular momentum</subject><subject>Bose-Einstein condensates</subject><subject>Characterization and Evaluation of Materials</subject><subject>Condensates</subject><subject>Condensed Matter Physics</subject><subject>Low temperature physics</subject><subject>Magnetic Materials</subject><subject>Magnetism</subject><subject>Momentum transfer</subject><subject>Physical properties</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Potential barriers</subject><subject>Quantum transport</subject><subject>Rotation</subject><subject>Solitary waves</subject><subject>Vortices</subject><subject>Winding</subject><issn>0022-2291</issn><issn>1573-7357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kMtKxDAUhoMoOFYfwF3BdZxzkqZJljqMFxgRRNeh0yalgyZj0lm48x18Q5_EDBVcuTr_4r8cPkLOES4RQM4TggZNARVliEDxgMxQSE4lF_KQzAAYo4xpPCYnKW0AQKuaz8j8wcZ-8H0ZXPkUxmbc6-uQ7Pfn13LwabSDLxfBd9anZrTplBy55jXZs99bkJeb5fPijq4eb-8XVyvacsVGWksBeczxtYB1ZSvHVGsrxhCYYB2rnAbgWgK0NSrVtK6TznagrRBCK-C8IBdT7zaG951No9mEXfR50uQWrEFg_r8gOLnaGFKK1pltHN6a-GEQzJ6LmbiYzMXsuRjMGTZlUvb63sa_5v9DP0gXY4Q</recordid><startdate>20190415</startdate><enddate>20190415</enddate><creator>Kanai, Toshiaki</creator><creator>Guo, Wei</creator><creator>Tsubota, Makoto</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-9446-2497</orcidid><orcidid>https://orcid.org/0000-0002-9466-3213</orcidid></search><sort><creationdate>20190415</creationdate><title>Merging of Rotating Bose–Einstein Condensates</title><author>Kanai, Toshiaki ; Guo, Wei ; Tsubota, Makoto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-6750291f3b50b4e4f28ce42210252d24f90039700c6188acfd7fed09e55598033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Angular momentum</topic><topic>Bose-Einstein condensates</topic><topic>Characterization and Evaluation of Materials</topic><topic>Condensates</topic><topic>Condensed Matter Physics</topic><topic>Low temperature physics</topic><topic>Magnetic Materials</topic><topic>Magnetism</topic><topic>Momentum transfer</topic><topic>Physical properties</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Potential barriers</topic><topic>Quantum transport</topic><topic>Rotation</topic><topic>Solitary waves</topic><topic>Vortices</topic><topic>Winding</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kanai, Toshiaki</creatorcontrib><creatorcontrib>Guo, Wei</creatorcontrib><creatorcontrib>Tsubota, Makoto</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of low temperature physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kanai, Toshiaki</au><au>Guo, Wei</au><au>Tsubota, Makoto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Merging of Rotating Bose–Einstein Condensates</atitle><jtitle>Journal of low temperature physics</jtitle><stitle>J Low Temp Phys</stitle><date>2019-04-15</date><risdate>2019</risdate><volume>195</volume><issue>1-2</issue><spage>37</spage><epage>50</epage><pages>37-50</pages><issn>0022-2291</issn><eissn>1573-7357</eissn><abstract>Merging of isolated Bose–Einstein condensates (BECs) is an important topic due to its relevance to matter-wave interferometry and the Kibble–Zurek mechanism. Many past research focused on merging of BECs with uniform initial phases. In our recent brief report (Kanai et al. in Phys Rev A 97:013612, 2018 ), we showed that upon merging of rotating BECs with non-uniform initial phases, spiral-shaped dark solitons can emerge. These solitons facilitate angular momentum transfer and allow the merged condensate to rotate even in the absence of quantized vortices. More strikingly, the sharp endpoints of these spiral solitons can induce rotational motion in the BECs like vortices but with effectively a fraction of a quantized circulation. This paper reports our systematic study on the merging dynamics of rotating BECs. We discuss how the relative winding number of the rotating BECs and the potential barrier that initially separates the BECs may affect the profile and dynamics of the spiral solitons. The number of spiral solitons created in the BECs is observed to always match exactly the relative winding number of the two BECs. The underlying mechanism for which the solitons can break up to form sharp endpoints with peculiar physical properties and why the number of solitons matches the relative winding number is identified and explained. These results improve our understanding of soliton dynamics, which may allow better manipulation of these non-topological phase defects when they are involved in various quantum transport processes.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10909-018-2110-1</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-9446-2497</orcidid><orcidid>https://orcid.org/0000-0002-9466-3213</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-2291
ispartof Journal of low temperature physics, 2019-04, Vol.195 (1-2), p.37-50
issn 0022-2291
1573-7357
language eng
recordid cdi_proquest_journals_2211605186
source SpringerLink Journals
subjects Angular momentum
Bose-Einstein condensates
Characterization and Evaluation of Materials
Condensates
Condensed Matter Physics
Low temperature physics
Magnetic Materials
Magnetism
Momentum transfer
Physical properties
Physics
Physics and Astronomy
Potential barriers
Quantum transport
Rotation
Solitary waves
Vortices
Winding
title Merging of Rotating Bose–Einstein Condensates
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T06%3A52%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Merging%20of%20Rotating%20Bose%E2%80%93Einstein%20Condensates&rft.jtitle=Journal%20of%20low%20temperature%20physics&rft.au=Kanai,%20Toshiaki&rft.date=2019-04-15&rft.volume=195&rft.issue=1-2&rft.spage=37&rft.epage=50&rft.pages=37-50&rft.issn=0022-2291&rft.eissn=1573-7357&rft_id=info:doi/10.1007/s10909-018-2110-1&rft_dat=%3Cproquest_cross%3E2211605186%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2211605186&rft_id=info:pmid/&rfr_iscdi=true