Merging of Rotating Bose–Einstein Condensates
Merging of isolated Bose–Einstein condensates (BECs) is an important topic due to its relevance to matter-wave interferometry and the Kibble–Zurek mechanism. Many past research focused on merging of BECs with uniform initial phases. In our recent brief report (Kanai et al. in Phys Rev A 97:013612, 2...
Gespeichert in:
Veröffentlicht in: | Journal of low temperature physics 2019-04, Vol.195 (1-2), p.37-50 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 50 |
---|---|
container_issue | 1-2 |
container_start_page | 37 |
container_title | Journal of low temperature physics |
container_volume | 195 |
creator | Kanai, Toshiaki Guo, Wei Tsubota, Makoto |
description | Merging of isolated Bose–Einstein condensates (BECs) is an important topic due to its relevance to matter-wave interferometry and the Kibble–Zurek mechanism. Many past research focused on merging of BECs with uniform initial phases. In our recent brief report (Kanai et al. in Phys Rev A 97:013612,
2018
), we showed that upon merging of rotating BECs with non-uniform initial phases, spiral-shaped dark solitons can emerge. These solitons facilitate angular momentum transfer and allow the merged condensate to rotate even in the absence of quantized vortices. More strikingly, the sharp endpoints of these spiral solitons can induce rotational motion in the BECs like vortices but with effectively a fraction of a quantized circulation. This paper reports our systematic study on the merging dynamics of rotating BECs. We discuss how the relative winding number of the rotating BECs and the potential barrier that initially separates the BECs may affect the profile and dynamics of the spiral solitons. The number of spiral solitons created in the BECs is observed to always match exactly the relative winding number of the two BECs. The underlying mechanism for which the solitons can break up to form sharp endpoints with peculiar physical properties and why the number of solitons matches the relative winding number is identified and explained. These results improve our understanding of soliton dynamics, which may allow better manipulation of these non-topological phase defects when they are involved in various quantum transport processes. |
doi_str_mv | 10.1007/s10909-018-2110-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2211605186</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2211605186</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-6750291f3b50b4e4f28ce42210252d24f90039700c6188acfd7fed09e55598033</originalsourceid><addsrcrecordid>eNp1kMtKxDAUhoMoOFYfwF3BdZxzkqZJljqMFxgRRNeh0yalgyZj0lm48x18Q5_EDBVcuTr_4r8cPkLOES4RQM4TggZNARVliEDxgMxQSE4lF_KQzAAYo4xpPCYnKW0AQKuaz8j8wcZ-8H0ZXPkUxmbc6-uQ7Pfn13LwabSDLxfBd9anZrTplBy55jXZs99bkJeb5fPijq4eb-8XVyvacsVGWksBeczxtYB1ZSvHVGsrxhCYYB2rnAbgWgK0NSrVtK6TznagrRBCK-C8IBdT7zaG951No9mEXfR50uQWrEFg_r8gOLnaGFKK1pltHN6a-GEQzJ6LmbiYzMXsuRjMGTZlUvb63sa_5v9DP0gXY4Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2211605186</pqid></control><display><type>article</type><title>Merging of Rotating Bose–Einstein Condensates</title><source>SpringerLink Journals</source><creator>Kanai, Toshiaki ; Guo, Wei ; Tsubota, Makoto</creator><creatorcontrib>Kanai, Toshiaki ; Guo, Wei ; Tsubota, Makoto</creatorcontrib><description>Merging of isolated Bose–Einstein condensates (BECs) is an important topic due to its relevance to matter-wave interferometry and the Kibble–Zurek mechanism. Many past research focused on merging of BECs with uniform initial phases. In our recent brief report (Kanai et al. in Phys Rev A 97:013612,
2018
), we showed that upon merging of rotating BECs with non-uniform initial phases, spiral-shaped dark solitons can emerge. These solitons facilitate angular momentum transfer and allow the merged condensate to rotate even in the absence of quantized vortices. More strikingly, the sharp endpoints of these spiral solitons can induce rotational motion in the BECs like vortices but with effectively a fraction of a quantized circulation. This paper reports our systematic study on the merging dynamics of rotating BECs. We discuss how the relative winding number of the rotating BECs and the potential barrier that initially separates the BECs may affect the profile and dynamics of the spiral solitons. The number of spiral solitons created in the BECs is observed to always match exactly the relative winding number of the two BECs. The underlying mechanism for which the solitons can break up to form sharp endpoints with peculiar physical properties and why the number of solitons matches the relative winding number is identified and explained. These results improve our understanding of soliton dynamics, which may allow better manipulation of these non-topological phase defects when they are involved in various quantum transport processes.</description><identifier>ISSN: 0022-2291</identifier><identifier>EISSN: 1573-7357</identifier><identifier>DOI: 10.1007/s10909-018-2110-1</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Angular momentum ; Bose-Einstein condensates ; Characterization and Evaluation of Materials ; Condensates ; Condensed Matter Physics ; Low temperature physics ; Magnetic Materials ; Magnetism ; Momentum transfer ; Physical properties ; Physics ; Physics and Astronomy ; Potential barriers ; Quantum transport ; Rotation ; Solitary waves ; Vortices ; Winding</subject><ispartof>Journal of low temperature physics, 2019-04, Vol.195 (1-2), p.37-50</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-6750291f3b50b4e4f28ce42210252d24f90039700c6188acfd7fed09e55598033</citedby><cites>FETCH-LOGICAL-c382t-6750291f3b50b4e4f28ce42210252d24f90039700c6188acfd7fed09e55598033</cites><orcidid>0000-0002-9446-2497 ; 0000-0002-9466-3213</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10909-018-2110-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10909-018-2110-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Kanai, Toshiaki</creatorcontrib><creatorcontrib>Guo, Wei</creatorcontrib><creatorcontrib>Tsubota, Makoto</creatorcontrib><title>Merging of Rotating Bose–Einstein Condensates</title><title>Journal of low temperature physics</title><addtitle>J Low Temp Phys</addtitle><description>Merging of isolated Bose–Einstein condensates (BECs) is an important topic due to its relevance to matter-wave interferometry and the Kibble–Zurek mechanism. Many past research focused on merging of BECs with uniform initial phases. In our recent brief report (Kanai et al. in Phys Rev A 97:013612,
2018
), we showed that upon merging of rotating BECs with non-uniform initial phases, spiral-shaped dark solitons can emerge. These solitons facilitate angular momentum transfer and allow the merged condensate to rotate even in the absence of quantized vortices. More strikingly, the sharp endpoints of these spiral solitons can induce rotational motion in the BECs like vortices but with effectively a fraction of a quantized circulation. This paper reports our systematic study on the merging dynamics of rotating BECs. We discuss how the relative winding number of the rotating BECs and the potential barrier that initially separates the BECs may affect the profile and dynamics of the spiral solitons. The number of spiral solitons created in the BECs is observed to always match exactly the relative winding number of the two BECs. The underlying mechanism for which the solitons can break up to form sharp endpoints with peculiar physical properties and why the number of solitons matches the relative winding number is identified and explained. These results improve our understanding of soliton dynamics, which may allow better manipulation of these non-topological phase defects when they are involved in various quantum transport processes.</description><subject>Angular momentum</subject><subject>Bose-Einstein condensates</subject><subject>Characterization and Evaluation of Materials</subject><subject>Condensates</subject><subject>Condensed Matter Physics</subject><subject>Low temperature physics</subject><subject>Magnetic Materials</subject><subject>Magnetism</subject><subject>Momentum transfer</subject><subject>Physical properties</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Potential barriers</subject><subject>Quantum transport</subject><subject>Rotation</subject><subject>Solitary waves</subject><subject>Vortices</subject><subject>Winding</subject><issn>0022-2291</issn><issn>1573-7357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kMtKxDAUhoMoOFYfwF3BdZxzkqZJljqMFxgRRNeh0yalgyZj0lm48x18Q5_EDBVcuTr_4r8cPkLOES4RQM4TggZNARVliEDxgMxQSE4lF_KQzAAYo4xpPCYnKW0AQKuaz8j8wcZ-8H0ZXPkUxmbc6-uQ7Pfn13LwabSDLxfBd9anZrTplBy55jXZs99bkJeb5fPijq4eb-8XVyvacsVGWksBeczxtYB1ZSvHVGsrxhCYYB2rnAbgWgK0NSrVtK6TznagrRBCK-C8IBdT7zaG951No9mEXfR50uQWrEFg_r8gOLnaGFKK1pltHN6a-GEQzJ6LmbiYzMXsuRjMGTZlUvb63sa_5v9DP0gXY4Q</recordid><startdate>20190415</startdate><enddate>20190415</enddate><creator>Kanai, Toshiaki</creator><creator>Guo, Wei</creator><creator>Tsubota, Makoto</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-9446-2497</orcidid><orcidid>https://orcid.org/0000-0002-9466-3213</orcidid></search><sort><creationdate>20190415</creationdate><title>Merging of Rotating Bose–Einstein Condensates</title><author>Kanai, Toshiaki ; Guo, Wei ; Tsubota, Makoto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-6750291f3b50b4e4f28ce42210252d24f90039700c6188acfd7fed09e55598033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Angular momentum</topic><topic>Bose-Einstein condensates</topic><topic>Characterization and Evaluation of Materials</topic><topic>Condensates</topic><topic>Condensed Matter Physics</topic><topic>Low temperature physics</topic><topic>Magnetic Materials</topic><topic>Magnetism</topic><topic>Momentum transfer</topic><topic>Physical properties</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Potential barriers</topic><topic>Quantum transport</topic><topic>Rotation</topic><topic>Solitary waves</topic><topic>Vortices</topic><topic>Winding</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kanai, Toshiaki</creatorcontrib><creatorcontrib>Guo, Wei</creatorcontrib><creatorcontrib>Tsubota, Makoto</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of low temperature physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kanai, Toshiaki</au><au>Guo, Wei</au><au>Tsubota, Makoto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Merging of Rotating Bose–Einstein Condensates</atitle><jtitle>Journal of low temperature physics</jtitle><stitle>J Low Temp Phys</stitle><date>2019-04-15</date><risdate>2019</risdate><volume>195</volume><issue>1-2</issue><spage>37</spage><epage>50</epage><pages>37-50</pages><issn>0022-2291</issn><eissn>1573-7357</eissn><abstract>Merging of isolated Bose–Einstein condensates (BECs) is an important topic due to its relevance to matter-wave interferometry and the Kibble–Zurek mechanism. Many past research focused on merging of BECs with uniform initial phases. In our recent brief report (Kanai et al. in Phys Rev A 97:013612,
2018
), we showed that upon merging of rotating BECs with non-uniform initial phases, spiral-shaped dark solitons can emerge. These solitons facilitate angular momentum transfer and allow the merged condensate to rotate even in the absence of quantized vortices. More strikingly, the sharp endpoints of these spiral solitons can induce rotational motion in the BECs like vortices but with effectively a fraction of a quantized circulation. This paper reports our systematic study on the merging dynamics of rotating BECs. We discuss how the relative winding number of the rotating BECs and the potential barrier that initially separates the BECs may affect the profile and dynamics of the spiral solitons. The number of spiral solitons created in the BECs is observed to always match exactly the relative winding number of the two BECs. The underlying mechanism for which the solitons can break up to form sharp endpoints with peculiar physical properties and why the number of solitons matches the relative winding number is identified and explained. These results improve our understanding of soliton dynamics, which may allow better manipulation of these non-topological phase defects when they are involved in various quantum transport processes.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10909-018-2110-1</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-9446-2497</orcidid><orcidid>https://orcid.org/0000-0002-9466-3213</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2291 |
ispartof | Journal of low temperature physics, 2019-04, Vol.195 (1-2), p.37-50 |
issn | 0022-2291 1573-7357 |
language | eng |
recordid | cdi_proquest_journals_2211605186 |
source | SpringerLink Journals |
subjects | Angular momentum Bose-Einstein condensates Characterization and Evaluation of Materials Condensates Condensed Matter Physics Low temperature physics Magnetic Materials Magnetism Momentum transfer Physical properties Physics Physics and Astronomy Potential barriers Quantum transport Rotation Solitary waves Vortices Winding |
title | Merging of Rotating Bose–Einstein Condensates |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T06%3A52%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Merging%20of%20Rotating%20Bose%E2%80%93Einstein%20Condensates&rft.jtitle=Journal%20of%20low%20temperature%20physics&rft.au=Kanai,%20Toshiaki&rft.date=2019-04-15&rft.volume=195&rft.issue=1-2&rft.spage=37&rft.epage=50&rft.pages=37-50&rft.issn=0022-2291&rft.eissn=1573-7357&rft_id=info:doi/10.1007/s10909-018-2110-1&rft_dat=%3Cproquest_cross%3E2211605186%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2211605186&rft_id=info:pmid/&rfr_iscdi=true |