Rellich, Gagliardo-Nirenberg, Trudinger and Caffarelli-Kohn-Nirenberg inequalities for Dunkl operators and applications
In this paper we obtain weighted higher order Rellich, weighted Gagliardo-Nirenberg, Trudinger, Caffarelli-Kohn-Nirenberg inequalities and the uncertainty principle for Dunkl operators. Moreover, we introduce an extension of the classical Caffarelli-Kohn-Nirenberg inequalities. Furthermore, we give...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2019-08 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Velicu, Andrei Yessirkegenov, Nurgissa |
description | In this paper we obtain weighted higher order Rellich, weighted Gagliardo-Nirenberg, Trudinger, Caffarelli-Kohn-Nirenberg inequalities and the uncertainty principle for Dunkl operators. Moreover, we introduce an extension of the classical Caffarelli-Kohn-Nirenberg inequalities. Furthermore, we give an application of Gagliardo-Nirenberg inequality to the Cauchy problem for the nonlinear damped wave equations for the Dunkl Laplacian. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2211480652</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2211480652</sourcerecordid><originalsourceid>FETCH-proquest_journals_22114806523</originalsourceid><addsrcrecordid>eNqNjUsLgkAURocgSMr_MNBWQcdH7u0FQYtoL7e82tQwo3cc-vtZBG1bfYtzDt-EeSJJ4rBIhZgx39p7FEUiX4ksSzz2PKFS8noL-A5aJYFqEx4lob4gtQE_k6ulbpE46JqX0DRA7yA8mJv-iVxq7B0oOUi0vDHE104_FDcdEgyG7CeHrhuvYJBG2wWbNqAs-t-ds-V2cy73YUemd2iH6m4c6RFVQsRxWkR5JpL_rBchpU2p</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2211480652</pqid></control><display><type>article</type><title>Rellich, Gagliardo-Nirenberg, Trudinger and Caffarelli-Kohn-Nirenberg inequalities for Dunkl operators and applications</title><source>Free E- Journals</source><creator>Velicu, Andrei ; Yessirkegenov, Nurgissa</creator><creatorcontrib>Velicu, Andrei ; Yessirkegenov, Nurgissa</creatorcontrib><description>In this paper we obtain weighted higher order Rellich, weighted Gagliardo-Nirenberg, Trudinger, Caffarelli-Kohn-Nirenberg inequalities and the uncertainty principle for Dunkl operators. Moreover, we introduce an extension of the classical Caffarelli-Kohn-Nirenberg inequalities. Furthermore, we give an application of Gagliardo-Nirenberg inequality to the Cauchy problem for the nonlinear damped wave equations for the Dunkl Laplacian.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Cauchy problems ; Inequalities ; Nonlinear equations ; Operators ; Wave equations</subject><ispartof>arXiv.org, 2019-08</ispartof><rights>2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Velicu, Andrei</creatorcontrib><creatorcontrib>Yessirkegenov, Nurgissa</creatorcontrib><title>Rellich, Gagliardo-Nirenberg, Trudinger and Caffarelli-Kohn-Nirenberg inequalities for Dunkl operators and applications</title><title>arXiv.org</title><description>In this paper we obtain weighted higher order Rellich, weighted Gagliardo-Nirenberg, Trudinger, Caffarelli-Kohn-Nirenberg inequalities and the uncertainty principle for Dunkl operators. Moreover, we introduce an extension of the classical Caffarelli-Kohn-Nirenberg inequalities. Furthermore, we give an application of Gagliardo-Nirenberg inequality to the Cauchy problem for the nonlinear damped wave equations for the Dunkl Laplacian.</description><subject>Cauchy problems</subject><subject>Inequalities</subject><subject>Nonlinear equations</subject><subject>Operators</subject><subject>Wave equations</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjUsLgkAURocgSMr_MNBWQcdH7u0FQYtoL7e82tQwo3cc-vtZBG1bfYtzDt-EeSJJ4rBIhZgx39p7FEUiX4ksSzz2PKFS8noL-A5aJYFqEx4lob4gtQE_k6ulbpE46JqX0DRA7yA8mJv-iVxq7B0oOUi0vDHE104_FDcdEgyG7CeHrhuvYJBG2wWbNqAs-t-ds-V2cy73YUemd2iH6m4c6RFVQsRxWkR5JpL_rBchpU2p</recordid><startdate>20190817</startdate><enddate>20190817</enddate><creator>Velicu, Andrei</creator><creator>Yessirkegenov, Nurgissa</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20190817</creationdate><title>Rellich, Gagliardo-Nirenberg, Trudinger and Caffarelli-Kohn-Nirenberg inequalities for Dunkl operators and applications</title><author>Velicu, Andrei ; Yessirkegenov, Nurgissa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_22114806523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Cauchy problems</topic><topic>Inequalities</topic><topic>Nonlinear equations</topic><topic>Operators</topic><topic>Wave equations</topic><toplevel>online_resources</toplevel><creatorcontrib>Velicu, Andrei</creatorcontrib><creatorcontrib>Yessirkegenov, Nurgissa</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Velicu, Andrei</au><au>Yessirkegenov, Nurgissa</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Rellich, Gagliardo-Nirenberg, Trudinger and Caffarelli-Kohn-Nirenberg inequalities for Dunkl operators and applications</atitle><jtitle>arXiv.org</jtitle><date>2019-08-17</date><risdate>2019</risdate><eissn>2331-8422</eissn><abstract>In this paper we obtain weighted higher order Rellich, weighted Gagliardo-Nirenberg, Trudinger, Caffarelli-Kohn-Nirenberg inequalities and the uncertainty principle for Dunkl operators. Moreover, we introduce an extension of the classical Caffarelli-Kohn-Nirenberg inequalities. Furthermore, we give an application of Gagliardo-Nirenberg inequality to the Cauchy problem for the nonlinear damped wave equations for the Dunkl Laplacian.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2019-08 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2211480652 |
source | Free E- Journals |
subjects | Cauchy problems Inequalities Nonlinear equations Operators Wave equations |
title | Rellich, Gagliardo-Nirenberg, Trudinger and Caffarelli-Kohn-Nirenberg inequalities for Dunkl operators and applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T06%3A54%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Rellich,%20Gagliardo-Nirenberg,%20Trudinger%20and%20Caffarelli-Kohn-Nirenberg%20inequalities%20for%20Dunkl%20operators%20and%20applications&rft.jtitle=arXiv.org&rft.au=Velicu,%20Andrei&rft.date=2019-08-17&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2211480652%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2211480652&rft_id=info:pmid/&rfr_iscdi=true |