Nonlinear photoresponse of type-II Weyl semimetals
The experimental manifestation of topological effects in bulk materials is attracting enormous research interest. However, direct experimental evidence of the effective k -space monopole of the Weyl nodes has so far been lacking. Here, signatures of the singular topology of the type-II Weyl semimeta...
Gespeichert in:
Veröffentlicht in: | Nature materials 2019-05, Vol.18 (5), p.476-481 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 481 |
---|---|
container_issue | 5 |
container_start_page | 476 |
container_title | Nature materials |
container_volume | 18 |
creator | Ma, Junchao Gu, Qiangqiang Liu, Yinan Lai, Jiawei Yu, Peng Zhuo, Xiao Liu, Zheng Chen, Jian-Hao Feng, Ji Sun, Dong |
description | The experimental manifestation of topological effects in bulk materials is attracting enormous research interest. However, direct experimental evidence of the effective
k
-space monopole of the Weyl nodes has so far been lacking. Here, signatures of the singular topology of the type-II Weyl semimetal TaIrTe
4
are revealed in the photoresponses, which are related to divergence of the Berry curvature. TaIrTe
4
exhibits a large photoresponsivity of 130.2 mA W
−1
—with 4 μm excitation in an unbiased field-effect transistor at room temperature—arising from the third-order nonlinear optical response, approaching the performance of commercial low-temperature detectors. In addition, the circularly polarized galvanic response is enhanced at 4 μm, possibly due to the same Berry curvature singularity enhancement. Considering the optical selection rule of chiral Weyl cones, this may open the door for studying and controlling the chiral polarization of Weyl fermions with an electric field in addition to the optical helicities.
A large photoresponse is observed in the type-II Weyl semimetal TaIrTe
4
, and attributed to the diverging Berry curvature of the Weyl nodes. |
doi_str_mv | 10.1038/s41563-019-0296-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_journals_2211330265</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2211330265</sourcerecordid><originalsourceid>FETCH-LOGICAL-p179t-cc49cd28b18045f27d262e6c63523ae6c2fb74a92e02d1bf69ea8a117d89ccd3</originalsourceid><addsrcrecordid>eNpFkE1LAzEQhoMotlZ_gBdZ8BzNTDbZzVGKH4Wil4LHkN2d1ZbuZk22h_57U1rxNC_MwzvMw9gtiAcQsnyMOSgtuQDDBRrN1RmbQl5onmstzk8ZAHHCrmLcCIGglL5kEylKKYtSTBm--3677smFbPj2ow8UB99HynybjfuB-GKRfdJ-m0Xq1h2Nbhuv2UWbBt2c5oytXp5X8ze-_HhdzJ-WfIDCjLyuc1M3WFZQily1WDSokXStpULpUsC2KnJnkAQ2ULXakCsdQNGUpq4bOWP3x9oh-J8dxdFu_C706aJFBJBSoFaJujtRu6qjxg5h3bmwt38fJgCPQEyr_ovCfw0Ie9Bojxpt0mgPGq2Sv-m8Yb8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2211330265</pqid></control><display><type>article</type><title>Nonlinear photoresponse of type-II Weyl semimetals</title><source>SpringerLink Journals</source><source>Nature Journals Online</source><creator>Ma, Junchao ; Gu, Qiangqiang ; Liu, Yinan ; Lai, Jiawei ; Yu, Peng ; Zhuo, Xiao ; Liu, Zheng ; Chen, Jian-Hao ; Feng, Ji ; Sun, Dong</creator><creatorcontrib>Ma, Junchao ; Gu, Qiangqiang ; Liu, Yinan ; Lai, Jiawei ; Yu, Peng ; Zhuo, Xiao ; Liu, Zheng ; Chen, Jian-Hao ; Feng, Ji ; Sun, Dong</creatorcontrib><description>The experimental manifestation of topological effects in bulk materials is attracting enormous research interest. However, direct experimental evidence of the effective
k
-space monopole of the Weyl nodes has so far been lacking. Here, signatures of the singular topology of the type-II Weyl semimetal TaIrTe
4
are revealed in the photoresponses, which are related to divergence of the Berry curvature. TaIrTe
4
exhibits a large photoresponsivity of 130.2 mA W
−1
—with 4 μm excitation in an unbiased field-effect transistor at room temperature—arising from the third-order nonlinear optical response, approaching the performance of commercial low-temperature detectors. In addition, the circularly polarized galvanic response is enhanced at 4 μm, possibly due to the same Berry curvature singularity enhancement. Considering the optical selection rule of chiral Weyl cones, this may open the door for studying and controlling the chiral polarization of Weyl fermions with an electric field in addition to the optical helicities.
A large photoresponse is observed in the type-II Weyl semimetal TaIrTe
4
, and attributed to the diverging Berry curvature of the Weyl nodes.</description><identifier>ISSN: 1476-1122</identifier><identifier>EISSN: 1476-4660</identifier><identifier>DOI: 10.1038/s41563-019-0296-5</identifier><identifier>PMID: 30833780</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/1019/385 ; 639/301/119/2792 ; Biomaterials ; Chemistry and Materials Science ; Circular polarization ; Condensed Matter Physics ; Cones ; Curvature ; Divergence ; Electric fields ; Energy ; Fermions ; Field effect transistors ; Low temperature ; Materials Science ; Metalloids ; Nanotechnology ; Nonlinear response ; Optical and Electronic Materials ; Semiconductor devices ; Symmetry ; Topology</subject><ispartof>Nature materials, 2019-05, Vol.18 (5), p.476-481</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2019</rights><rights>2019© The Author(s), under exclusive licence to Springer Nature Limited 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-p179t-cc49cd28b18045f27d262e6c63523ae6c2fb74a92e02d1bf69ea8a117d89ccd3</cites><orcidid>0000-0002-8825-7198 ; 0000-0003-1944-718X ; 0000-0002-3556-379X ; 0000-0002-9485-1759 ; 0000-0002-0898-4548</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41563-019-0296-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41563-019-0296-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30833780$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ma, Junchao</creatorcontrib><creatorcontrib>Gu, Qiangqiang</creatorcontrib><creatorcontrib>Liu, Yinan</creatorcontrib><creatorcontrib>Lai, Jiawei</creatorcontrib><creatorcontrib>Yu, Peng</creatorcontrib><creatorcontrib>Zhuo, Xiao</creatorcontrib><creatorcontrib>Liu, Zheng</creatorcontrib><creatorcontrib>Chen, Jian-Hao</creatorcontrib><creatorcontrib>Feng, Ji</creatorcontrib><creatorcontrib>Sun, Dong</creatorcontrib><title>Nonlinear photoresponse of type-II Weyl semimetals</title><title>Nature materials</title><addtitle>Nat. Mater</addtitle><addtitle>Nat Mater</addtitle><description>The experimental manifestation of topological effects in bulk materials is attracting enormous research interest. However, direct experimental evidence of the effective
k
-space monopole of the Weyl nodes has so far been lacking. Here, signatures of the singular topology of the type-II Weyl semimetal TaIrTe
4
are revealed in the photoresponses, which are related to divergence of the Berry curvature. TaIrTe
4
exhibits a large photoresponsivity of 130.2 mA W
−1
—with 4 μm excitation in an unbiased field-effect transistor at room temperature—arising from the third-order nonlinear optical response, approaching the performance of commercial low-temperature detectors. In addition, the circularly polarized galvanic response is enhanced at 4 μm, possibly due to the same Berry curvature singularity enhancement. Considering the optical selection rule of chiral Weyl cones, this may open the door for studying and controlling the chiral polarization of Weyl fermions with an electric field in addition to the optical helicities.
A large photoresponse is observed in the type-II Weyl semimetal TaIrTe
4
, and attributed to the diverging Berry curvature of the Weyl nodes.</description><subject>639/301/1019/385</subject><subject>639/301/119/2792</subject><subject>Biomaterials</subject><subject>Chemistry and Materials Science</subject><subject>Circular polarization</subject><subject>Condensed Matter Physics</subject><subject>Cones</subject><subject>Curvature</subject><subject>Divergence</subject><subject>Electric fields</subject><subject>Energy</subject><subject>Fermions</subject><subject>Field effect transistors</subject><subject>Low temperature</subject><subject>Materials Science</subject><subject>Metalloids</subject><subject>Nanotechnology</subject><subject>Nonlinear response</subject><subject>Optical and Electronic Materials</subject><subject>Semiconductor devices</subject><subject>Symmetry</subject><subject>Topology</subject><issn>1476-1122</issn><issn>1476-4660</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpFkE1LAzEQhoMotlZ_gBdZ8BzNTDbZzVGKH4Wil4LHkN2d1ZbuZk22h_57U1rxNC_MwzvMw9gtiAcQsnyMOSgtuQDDBRrN1RmbQl5onmstzk8ZAHHCrmLcCIGglL5kEylKKYtSTBm--3677smFbPj2ow8UB99HynybjfuB-GKRfdJ-m0Xq1h2Nbhuv2UWbBt2c5oytXp5X8ze-_HhdzJ-WfIDCjLyuc1M3WFZQily1WDSokXStpULpUsC2KnJnkAQ2ULXakCsdQNGUpq4bOWP3x9oh-J8dxdFu_C706aJFBJBSoFaJujtRu6qjxg5h3bmwt38fJgCPQEyr_ovCfw0Ie9Bojxpt0mgPGq2Sv-m8Yb8</recordid><startdate>20190501</startdate><enddate>20190501</enddate><creator>Ma, Junchao</creator><creator>Gu, Qiangqiang</creator><creator>Liu, Yinan</creator><creator>Lai, Jiawei</creator><creator>Yu, Peng</creator><creator>Zhuo, Xiao</creator><creator>Liu, Zheng</creator><creator>Chen, Jian-Hao</creator><creator>Feng, Ji</creator><creator>Sun, Dong</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>3V.</scope><scope>7SR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-8825-7198</orcidid><orcidid>https://orcid.org/0000-0003-1944-718X</orcidid><orcidid>https://orcid.org/0000-0002-3556-379X</orcidid><orcidid>https://orcid.org/0000-0002-9485-1759</orcidid><orcidid>https://orcid.org/0000-0002-0898-4548</orcidid></search><sort><creationdate>20190501</creationdate><title>Nonlinear photoresponse of type-II Weyl semimetals</title><author>Ma, Junchao ; Gu, Qiangqiang ; Liu, Yinan ; Lai, Jiawei ; Yu, Peng ; Zhuo, Xiao ; Liu, Zheng ; Chen, Jian-Hao ; Feng, Ji ; Sun, Dong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p179t-cc49cd28b18045f27d262e6c63523ae6c2fb74a92e02d1bf69ea8a117d89ccd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>639/301/1019/385</topic><topic>639/301/119/2792</topic><topic>Biomaterials</topic><topic>Chemistry and Materials Science</topic><topic>Circular polarization</topic><topic>Condensed Matter Physics</topic><topic>Cones</topic><topic>Curvature</topic><topic>Divergence</topic><topic>Electric fields</topic><topic>Energy</topic><topic>Fermions</topic><topic>Field effect transistors</topic><topic>Low temperature</topic><topic>Materials Science</topic><topic>Metalloids</topic><topic>Nanotechnology</topic><topic>Nonlinear response</topic><topic>Optical and Electronic Materials</topic><topic>Semiconductor devices</topic><topic>Symmetry</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, Junchao</creatorcontrib><creatorcontrib>Gu, Qiangqiang</creatorcontrib><creatorcontrib>Liu, Yinan</creatorcontrib><creatorcontrib>Lai, Jiawei</creatorcontrib><creatorcontrib>Yu, Peng</creatorcontrib><creatorcontrib>Zhuo, Xiao</creatorcontrib><creatorcontrib>Liu, Zheng</creatorcontrib><creatorcontrib>Chen, Jian-Hao</creatorcontrib><creatorcontrib>Feng, Ji</creatorcontrib><creatorcontrib>Sun, Dong</creatorcontrib><collection>PubMed</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Nature materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ma, Junchao</au><au>Gu, Qiangqiang</au><au>Liu, Yinan</au><au>Lai, Jiawei</au><au>Yu, Peng</au><au>Zhuo, Xiao</au><au>Liu, Zheng</au><au>Chen, Jian-Hao</au><au>Feng, Ji</au><au>Sun, Dong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonlinear photoresponse of type-II Weyl semimetals</atitle><jtitle>Nature materials</jtitle><stitle>Nat. Mater</stitle><addtitle>Nat Mater</addtitle><date>2019-05-01</date><risdate>2019</risdate><volume>18</volume><issue>5</issue><spage>476</spage><epage>481</epage><pages>476-481</pages><issn>1476-1122</issn><eissn>1476-4660</eissn><abstract>The experimental manifestation of topological effects in bulk materials is attracting enormous research interest. However, direct experimental evidence of the effective
k
-space monopole of the Weyl nodes has so far been lacking. Here, signatures of the singular topology of the type-II Weyl semimetal TaIrTe
4
are revealed in the photoresponses, which are related to divergence of the Berry curvature. TaIrTe
4
exhibits a large photoresponsivity of 130.2 mA W
−1
—with 4 μm excitation in an unbiased field-effect transistor at room temperature—arising from the third-order nonlinear optical response, approaching the performance of commercial low-temperature detectors. In addition, the circularly polarized galvanic response is enhanced at 4 μm, possibly due to the same Berry curvature singularity enhancement. Considering the optical selection rule of chiral Weyl cones, this may open the door for studying and controlling the chiral polarization of Weyl fermions with an electric field in addition to the optical helicities.
A large photoresponse is observed in the type-II Weyl semimetal TaIrTe
4
, and attributed to the diverging Berry curvature of the Weyl nodes.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>30833780</pmid><doi>10.1038/s41563-019-0296-5</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-8825-7198</orcidid><orcidid>https://orcid.org/0000-0003-1944-718X</orcidid><orcidid>https://orcid.org/0000-0002-3556-379X</orcidid><orcidid>https://orcid.org/0000-0002-9485-1759</orcidid><orcidid>https://orcid.org/0000-0002-0898-4548</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1476-1122 |
ispartof | Nature materials, 2019-05, Vol.18 (5), p.476-481 |
issn | 1476-1122 1476-4660 |
language | eng |
recordid | cdi_proquest_journals_2211330265 |
source | SpringerLink Journals; Nature Journals Online |
subjects | 639/301/1019/385 639/301/119/2792 Biomaterials Chemistry and Materials Science Circular polarization Condensed Matter Physics Cones Curvature Divergence Electric fields Energy Fermions Field effect transistors Low temperature Materials Science Metalloids Nanotechnology Nonlinear response Optical and Electronic Materials Semiconductor devices Symmetry Topology |
title | Nonlinear photoresponse of type-II Weyl semimetals |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T03%3A26%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonlinear%20photoresponse%20of%20type-II%20Weyl%20semimetals&rft.jtitle=Nature%20materials&rft.au=Ma,%20Junchao&rft.date=2019-05-01&rft.volume=18&rft.issue=5&rft.spage=476&rft.epage=481&rft.pages=476-481&rft.issn=1476-1122&rft.eissn=1476-4660&rft_id=info:doi/10.1038/s41563-019-0296-5&rft_dat=%3Cproquest_pubme%3E2211330265%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2211330265&rft_id=info:pmid/30833780&rfr_iscdi=true |