In-Motion Coarse Alignment Method for SINS/GPS Using Position Loci

Misalignment angle is an important error in the integration of the strapdown inertial navigation system (SINS) and the global positioning system (GPS). Currently, the popular methods for SINS/GPS integrated system are based on the ground velocity. There are two major defects: 1) not all GPS receiver...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE sensors journal 2019-05, Vol.19 (10), p.3930-3938
Hauptverfasser: Xu, Xiang, Xu, Dacheng, Zhang, Tao, Zhao, Heming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3938
container_issue 10
container_start_page 3930
container_title IEEE sensors journal
container_volume 19
creator Xu, Xiang
Xu, Dacheng
Zhang, Tao
Zhao, Heming
description Misalignment angle is an important error in the integration of the strapdown inertial navigation system (SINS) and the global positioning system (GPS). Currently, the popular methods for SINS/GPS integrated system are based on the ground velocity. There are two major defects: 1) not all GPS receivers provide the velocity outputs and 2) the contained outliers in the velocity will degrade the performance of the alignment methods. In this paper, an in-motion coarse alignment method for SINS/GPS integrated system using position loci is proposed. First, the observation vector for the in-motion coarse alignment with the position loci is derived. Different from the current popular methods, the constructed observation vector is just relative with the GPS positioning information, which can be obtained from any GPS receiver directly. Thus, the applicable range of the in-motion coarse alignment method is extended. Second, based on the advantages of the position loci, the proposed method can suppress the interferences of the outliers, which are contained in the GPS positioning outputs. Finally, the simulation and field tests are designed to verify the performance of the proposed method. The test results show that the proposed method is more robust than the current popular methods.
doi_str_mv 10.1109/JSEN.2019.2896274
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2211108994</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8629971</ieee_id><sourcerecordid>2211108994</sourcerecordid><originalsourceid>FETCH-LOGICAL-c341t-903d214d90e07aa163834da8c2352beee5ea177da08060c5c98537e1b43de67e3</originalsourceid><addsrcrecordid>eNo9kE1PAjEQhhujiYj-AONlE88LnX5s2yMSQAwgyUrirSm7BUtgi-1y8N-7K8TTzOF535k8CD0C7gFg1X_LR4sewaB6RKqMCHaFOsC5TEEwed3uFKeMis9bdBfjDjek4KKDXqZVOve181Uy9CZEmwz2blsdbFUnc1t_-TLZ-JDk00XenyzzZBVdtU2WPrq_zMwX7h7dbMw-2ofL7KLVePQxfE1n75PpcDBLC8qgThWmJQFWKmyxMAYyKikrjSwI5WRtreXWgBClwRJnuOCFkpwKC2tGS5sJS7vo-dx7DP77ZGOtd_4UquakJgQaC1Ip1lBwporgYwx2o4_BHUz40YB1q0q3qnSrSl9UNZmnc8Y1b_zzMiNKCaC__y1iww</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2211108994</pqid></control><display><type>article</type><title>In-Motion Coarse Alignment Method for SINS/GPS Using Position Loci</title><source>IEEE/IET Electronic Library (IEL)</source><creator>Xu, Xiang ; Xu, Dacheng ; Zhang, Tao ; Zhao, Heming</creator><creatorcontrib>Xu, Xiang ; Xu, Dacheng ; Zhang, Tao ; Zhao, Heming</creatorcontrib><description>Misalignment angle is an important error in the integration of the strapdown inertial navigation system (SINS) and the global positioning system (GPS). Currently, the popular methods for SINS/GPS integrated system are based on the ground velocity. There are two major defects: 1) not all GPS receivers provide the velocity outputs and 2) the contained outliers in the velocity will degrade the performance of the alignment methods. In this paper, an in-motion coarse alignment method for SINS/GPS integrated system using position loci is proposed. First, the observation vector for the in-motion coarse alignment with the position loci is derived. Different from the current popular methods, the constructed observation vector is just relative with the GPS positioning information, which can be obtained from any GPS receiver directly. Thus, the applicable range of the in-motion coarse alignment method is extended. Second, based on the advantages of the position loci, the proposed method can suppress the interferences of the outliers, which are contained in the GPS positioning outputs. Finally, the simulation and field tests are designed to verify the performance of the proposed method. The test results show that the proposed method is more robust than the current popular methods.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2019.2896274</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Alignment ; Field tests ; Global Positioning System ; Global positioning systems ; GPS ; GPS/SINS ; In-motion coarse alignment method ; Inertial navigation ; land vehicle ; Loci ; Methods ; Misalignment ; Navigation systems ; observation vector ; Outliers (statistics) ; Performance degradation ; position loci ; Position measurement ; Receivers ; robust alignment method ; Satellite navigation systems ; Sensors ; Strapdown inertial navigation ; Transforms</subject><ispartof>IEEE sensors journal, 2019-05, Vol.19 (10), p.3930-3938</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c341t-903d214d90e07aa163834da8c2352beee5ea177da08060c5c98537e1b43de67e3</citedby><cites>FETCH-LOGICAL-c341t-903d214d90e07aa163834da8c2352beee5ea177da08060c5c98537e1b43de67e3</cites><orcidid>0000-0002-8312-3350 ; 0000-0002-1614-9606 ; 0000-0001-9955-3905</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8629971$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8629971$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xu, Xiang</creatorcontrib><creatorcontrib>Xu, Dacheng</creatorcontrib><creatorcontrib>Zhang, Tao</creatorcontrib><creatorcontrib>Zhao, Heming</creatorcontrib><title>In-Motion Coarse Alignment Method for SINS/GPS Using Position Loci</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>Misalignment angle is an important error in the integration of the strapdown inertial navigation system (SINS) and the global positioning system (GPS). Currently, the popular methods for SINS/GPS integrated system are based on the ground velocity. There are two major defects: 1) not all GPS receivers provide the velocity outputs and 2) the contained outliers in the velocity will degrade the performance of the alignment methods. In this paper, an in-motion coarse alignment method for SINS/GPS integrated system using position loci is proposed. First, the observation vector for the in-motion coarse alignment with the position loci is derived. Different from the current popular methods, the constructed observation vector is just relative with the GPS positioning information, which can be obtained from any GPS receiver directly. Thus, the applicable range of the in-motion coarse alignment method is extended. Second, based on the advantages of the position loci, the proposed method can suppress the interferences of the outliers, which are contained in the GPS positioning outputs. Finally, the simulation and field tests are designed to verify the performance of the proposed method. The test results show that the proposed method is more robust than the current popular methods.</description><subject>Alignment</subject><subject>Field tests</subject><subject>Global Positioning System</subject><subject>Global positioning systems</subject><subject>GPS</subject><subject>GPS/SINS</subject><subject>In-motion coarse alignment method</subject><subject>Inertial navigation</subject><subject>land vehicle</subject><subject>Loci</subject><subject>Methods</subject><subject>Misalignment</subject><subject>Navigation systems</subject><subject>observation vector</subject><subject>Outliers (statistics)</subject><subject>Performance degradation</subject><subject>position loci</subject><subject>Position measurement</subject><subject>Receivers</subject><subject>robust alignment method</subject><subject>Satellite navigation systems</subject><subject>Sensors</subject><subject>Strapdown inertial navigation</subject><subject>Transforms</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1PAjEQhhujiYj-AONlE88LnX5s2yMSQAwgyUrirSm7BUtgi-1y8N-7K8TTzOF535k8CD0C7gFg1X_LR4sewaB6RKqMCHaFOsC5TEEwed3uFKeMis9bdBfjDjek4KKDXqZVOve181Uy9CZEmwz2blsdbFUnc1t_-TLZ-JDk00XenyzzZBVdtU2WPrq_zMwX7h7dbMw-2ofL7KLVePQxfE1n75PpcDBLC8qgThWmJQFWKmyxMAYyKikrjSwI5WRtreXWgBClwRJnuOCFkpwKC2tGS5sJS7vo-dx7DP77ZGOtd_4UquakJgQaC1Ip1lBwporgYwx2o4_BHUz40YB1q0q3qnSrSl9UNZmnc8Y1b_zzMiNKCaC__y1iww</recordid><startdate>20190515</startdate><enddate>20190515</enddate><creator>Xu, Xiang</creator><creator>Xu, Dacheng</creator><creator>Zhang, Tao</creator><creator>Zhao, Heming</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-8312-3350</orcidid><orcidid>https://orcid.org/0000-0002-1614-9606</orcidid><orcidid>https://orcid.org/0000-0001-9955-3905</orcidid></search><sort><creationdate>20190515</creationdate><title>In-Motion Coarse Alignment Method for SINS/GPS Using Position Loci</title><author>Xu, Xiang ; Xu, Dacheng ; Zhang, Tao ; Zhao, Heming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c341t-903d214d90e07aa163834da8c2352beee5ea177da08060c5c98537e1b43de67e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Alignment</topic><topic>Field tests</topic><topic>Global Positioning System</topic><topic>Global positioning systems</topic><topic>GPS</topic><topic>GPS/SINS</topic><topic>In-motion coarse alignment method</topic><topic>Inertial navigation</topic><topic>land vehicle</topic><topic>Loci</topic><topic>Methods</topic><topic>Misalignment</topic><topic>Navigation systems</topic><topic>observation vector</topic><topic>Outliers (statistics)</topic><topic>Performance degradation</topic><topic>position loci</topic><topic>Position measurement</topic><topic>Receivers</topic><topic>robust alignment method</topic><topic>Satellite navigation systems</topic><topic>Sensors</topic><topic>Strapdown inertial navigation</topic><topic>Transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Xiang</creatorcontrib><creatorcontrib>Xu, Dacheng</creatorcontrib><creatorcontrib>Zhang, Tao</creatorcontrib><creatorcontrib>Zhao, Heming</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xu, Xiang</au><au>Xu, Dacheng</au><au>Zhang, Tao</au><au>Zhao, Heming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In-Motion Coarse Alignment Method for SINS/GPS Using Position Loci</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2019-05-15</date><risdate>2019</risdate><volume>19</volume><issue>10</issue><spage>3930</spage><epage>3938</epage><pages>3930-3938</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>Misalignment angle is an important error in the integration of the strapdown inertial navigation system (SINS) and the global positioning system (GPS). Currently, the popular methods for SINS/GPS integrated system are based on the ground velocity. There are two major defects: 1) not all GPS receivers provide the velocity outputs and 2) the contained outliers in the velocity will degrade the performance of the alignment methods. In this paper, an in-motion coarse alignment method for SINS/GPS integrated system using position loci is proposed. First, the observation vector for the in-motion coarse alignment with the position loci is derived. Different from the current popular methods, the constructed observation vector is just relative with the GPS positioning information, which can be obtained from any GPS receiver directly. Thus, the applicable range of the in-motion coarse alignment method is extended. Second, based on the advantages of the position loci, the proposed method can suppress the interferences of the outliers, which are contained in the GPS positioning outputs. Finally, the simulation and field tests are designed to verify the performance of the proposed method. The test results show that the proposed method is more robust than the current popular methods.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2019.2896274</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-8312-3350</orcidid><orcidid>https://orcid.org/0000-0002-1614-9606</orcidid><orcidid>https://orcid.org/0000-0001-9955-3905</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1530-437X
ispartof IEEE sensors journal, 2019-05, Vol.19 (10), p.3930-3938
issn 1530-437X
1558-1748
language eng
recordid cdi_proquest_journals_2211108994
source IEEE/IET Electronic Library (IEL)
subjects Alignment
Field tests
Global Positioning System
Global positioning systems
GPS
GPS/SINS
In-motion coarse alignment method
Inertial navigation
land vehicle
Loci
Methods
Misalignment
Navigation systems
observation vector
Outliers (statistics)
Performance degradation
position loci
Position measurement
Receivers
robust alignment method
Satellite navigation systems
Sensors
Strapdown inertial navigation
Transforms
title In-Motion Coarse Alignment Method for SINS/GPS Using Position Loci
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T16%3A37%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In-Motion%20Coarse%20Alignment%20Method%20for%20SINS/GPS%20Using%20Position%20Loci&rft.jtitle=IEEE%20sensors%20journal&rft.au=Xu,%20Xiang&rft.date=2019-05-15&rft.volume=19&rft.issue=10&rft.spage=3930&rft.epage=3938&rft.pages=3930-3938&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2019.2896274&rft_dat=%3Cproquest_RIE%3E2211108994%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2211108994&rft_id=info:pmid/&rft_ieee_id=8629971&rfr_iscdi=true