Lithospheric Signature of Late Cenozoic Extension in Electrical Resistivity Structure of the Rio Grande Rift, New Mexico, USA

We present electrical resistivity models of the crust and upper mantle from two‐dimensional (2‐D) inversion of magnetotelluric (MT) data collected in the Rio Grande rift, New Mexico, USA. Previous geophysical studies of the lithosphere beneath the rift identified a low‐velocity zone several hundred...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of geophysical research. Solid earth 2019-03, Vol.124 (3), p.2331-2351
Hauptverfasser: Feucht, D. W., Bedrosian, P. A., Sheehan, A. F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2351
container_issue 3
container_start_page 2331
container_title Journal of geophysical research. Solid earth
container_volume 124
creator Feucht, D. W.
Bedrosian, P. A.
Sheehan, A. F.
description We present electrical resistivity models of the crust and upper mantle from two‐dimensional (2‐D) inversion of magnetotelluric (MT) data collected in the Rio Grande rift, New Mexico, USA. Previous geophysical studies of the lithosphere beneath the rift identified a low‐velocity zone several hundred kilometers wide, suggesting that the upper mantle is characterized by a very broad zone of modified lithosphere. In contrast, the surface expression of the rift (e.g., high‐angle normal faults and synrift sedimentary units) is confined to a narrow region a few tens of kilometers wide about the rift axis. MT data are uniquely suited to probing the depths of the lithosphere that fill the gap between surface geology and body wave seismic tomography, namely the middle to lower crust and uppermost mantle. We model the electrical resistivity structure of the lithosphere along two east‐west trending profiles straddling the rift axis at the latitudes of 36.2 and 32.0°N. We present results from both isotropic and anisotropic 2‐D inversions of MT data along these profiles, with a strong preference for the latter in our interpretation. A key feature of the anisotropic resistivity modeling is a broad (~200‐km wide) zone of enhanced conductivity (
doi_str_mv 10.1029/2018JB016242
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2211005840</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2211005840</sourcerecordid><originalsourceid>FETCH-LOGICAL-a3687-8e80d609d5f7fb37953b713cdaee3f9d61490a7dd4564f9bda7eceb5545ef37f3</originalsourceid><addsrcrecordid>eNp9kNFPwjAQxhejiQR58w9o4itou7br9ggEUTI1AXleuu0qJXPFthMw8X93BDU-eS_35e733SVfEFwSfE1wmNyEmMSzESZRyMKToBOSKBkklEenv5rQ86Dn3Bq3FbcjwjrBZ6r9yrjNCqwu0EK_1NI3FpBRKJUe0Bhq82Ha1WTnoXba1EjXaFJB4VuDrNAcnHZev2u_Rwtvm-LH7leA5tqgqZV1eZDK99EjbNED7HRh-mi5GF4EZ0pWDnrfvRssbyfP47tB-jS9Hw_TgaRRLAYxxLiMcFJyJVRORcJpLggtSglAVVJGhCVYirJkPGIqyUspoICcc8ZBUaFoN7g63t1Y89aA89naNLZuX2ZhSAjGPGa4pfpHqrDGOQsq21j9Ku0-Izg7ZJz9zbjF6RHf6gr2_7LZbDofcUqZoF9NN32h</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2211005840</pqid></control><display><type>article</type><title>Lithospheric Signature of Late Cenozoic Extension in Electrical Resistivity Structure of the Rio Grande Rift, New Mexico, USA</title><source>Wiley Journals</source><source>Wiley Online Library (Open Access Collection)</source><creator>Feucht, D. W. ; Bedrosian, P. A. ; Sheehan, A. F.</creator><creatorcontrib>Feucht, D. W. ; Bedrosian, P. A. ; Sheehan, A. F.</creatorcontrib><description>We present electrical resistivity models of the crust and upper mantle from two‐dimensional (2‐D) inversion of magnetotelluric (MT) data collected in the Rio Grande rift, New Mexico, USA. Previous geophysical studies of the lithosphere beneath the rift identified a low‐velocity zone several hundred kilometers wide, suggesting that the upper mantle is characterized by a very broad zone of modified lithosphere. In contrast, the surface expression of the rift (e.g., high‐angle normal faults and synrift sedimentary units) is confined to a narrow region a few tens of kilometers wide about the rift axis. MT data are uniquely suited to probing the depths of the lithosphere that fill the gap between surface geology and body wave seismic tomography, namely the middle to lower crust and uppermost mantle. We model the electrical resistivity structure of the lithosphere along two east‐west trending profiles straddling the rift axis at the latitudes of 36.2 and 32.0°N. We present results from both isotropic and anisotropic 2‐D inversions of MT data along these profiles, with a strong preference for the latter in our interpretation. A key feature of the anisotropic resistivity modeling is a broad (~200‐km wide) zone of enhanced conductivity (&lt;20 Ωm) in the middle to lower crust imaged beneath both profiles. We attribute this lower crustal conductor to the accumulation of free saline fluids and partial melt, a direct result of magmatic activity along the rift. High‐conductivity anomalies in the midcrust and upper mantle are interpreted as fault zone alteration and partial melt, respectively. Key Points We image 2‐D anisotropic electric resistivity structure beneath the Rio Grande rift in New Mexico, USA, to depths of 200 km The lower crust beneath and laterally adjacent to the rift is exceptionally conductive along the entire rift axis The Rio Grande rift is electrically distinct from the Southern Basin and Range, the Colorado Plateau, and the Great Plains</description><identifier>ISSN: 2169-9313</identifier><identifier>EISSN: 2169-9356</identifier><identifier>DOI: 10.1029/2018JB016242</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Anisotropy ; Anomalies ; Basin and Range ; Cenozoic ; Computational fluid dynamics ; Conductivity ; Conductors ; Data ; Earth mantle ; Electrical resistivity ; Fault zones ; Faults ; Fluids ; Geology ; Geophysical studies ; Geophysics ; Great Plains ; Inversions ; Lava ; Lithosphere ; Magma ; magnetotellurics ; Modelling ; partial melt ; Profiles ; Rio Grande rift ; Seismic tomography ; Tomography ; Upper mantle</subject><ispartof>Journal of geophysical research. Solid earth, 2019-03, Vol.124 (3), p.2331-2351</ispartof><rights>2019. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a3687-8e80d609d5f7fb37953b713cdaee3f9d61490a7dd4564f9bda7eceb5545ef37f3</citedby><cites>FETCH-LOGICAL-a3687-8e80d609d5f7fb37953b713cdaee3f9d61490a7dd4564f9bda7eceb5545ef37f3</cites><orcidid>0000-0002-6786-1038 ; 0000-0002-3672-4719 ; 0000-0002-9629-1687</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2018JB016242$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2018JB016242$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,1433,27924,27925,45574,45575,46409,46833</link.rule.ids></links><search><creatorcontrib>Feucht, D. W.</creatorcontrib><creatorcontrib>Bedrosian, P. A.</creatorcontrib><creatorcontrib>Sheehan, A. F.</creatorcontrib><title>Lithospheric Signature of Late Cenozoic Extension in Electrical Resistivity Structure of the Rio Grande Rift, New Mexico, USA</title><title>Journal of geophysical research. Solid earth</title><description>We present electrical resistivity models of the crust and upper mantle from two‐dimensional (2‐D) inversion of magnetotelluric (MT) data collected in the Rio Grande rift, New Mexico, USA. Previous geophysical studies of the lithosphere beneath the rift identified a low‐velocity zone several hundred kilometers wide, suggesting that the upper mantle is characterized by a very broad zone of modified lithosphere. In contrast, the surface expression of the rift (e.g., high‐angle normal faults and synrift sedimentary units) is confined to a narrow region a few tens of kilometers wide about the rift axis. MT data are uniquely suited to probing the depths of the lithosphere that fill the gap between surface geology and body wave seismic tomography, namely the middle to lower crust and uppermost mantle. We model the electrical resistivity structure of the lithosphere along two east‐west trending profiles straddling the rift axis at the latitudes of 36.2 and 32.0°N. We present results from both isotropic and anisotropic 2‐D inversions of MT data along these profiles, with a strong preference for the latter in our interpretation. A key feature of the anisotropic resistivity modeling is a broad (~200‐km wide) zone of enhanced conductivity (&lt;20 Ωm) in the middle to lower crust imaged beneath both profiles. We attribute this lower crustal conductor to the accumulation of free saline fluids and partial melt, a direct result of magmatic activity along the rift. High‐conductivity anomalies in the midcrust and upper mantle are interpreted as fault zone alteration and partial melt, respectively. Key Points We image 2‐D anisotropic electric resistivity structure beneath the Rio Grande rift in New Mexico, USA, to depths of 200 km The lower crust beneath and laterally adjacent to the rift is exceptionally conductive along the entire rift axis The Rio Grande rift is electrically distinct from the Southern Basin and Range, the Colorado Plateau, and the Great Plains</description><subject>Anisotropy</subject><subject>Anomalies</subject><subject>Basin and Range</subject><subject>Cenozoic</subject><subject>Computational fluid dynamics</subject><subject>Conductivity</subject><subject>Conductors</subject><subject>Data</subject><subject>Earth mantle</subject><subject>Electrical resistivity</subject><subject>Fault zones</subject><subject>Faults</subject><subject>Fluids</subject><subject>Geology</subject><subject>Geophysical studies</subject><subject>Geophysics</subject><subject>Great Plains</subject><subject>Inversions</subject><subject>Lava</subject><subject>Lithosphere</subject><subject>Magma</subject><subject>magnetotellurics</subject><subject>Modelling</subject><subject>partial melt</subject><subject>Profiles</subject><subject>Rio Grande rift</subject><subject>Seismic tomography</subject><subject>Tomography</subject><subject>Upper mantle</subject><issn>2169-9313</issn><issn>2169-9356</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kNFPwjAQxhejiQR58w9o4itou7br9ggEUTI1AXleuu0qJXPFthMw8X93BDU-eS_35e733SVfEFwSfE1wmNyEmMSzESZRyMKToBOSKBkklEenv5rQ86Dn3Bq3FbcjwjrBZ6r9yrjNCqwu0EK_1NI3FpBRKJUe0Bhq82Ha1WTnoXba1EjXaFJB4VuDrNAcnHZev2u_Rwtvm-LH7leA5tqgqZV1eZDK99EjbNED7HRh-mi5GF4EZ0pWDnrfvRssbyfP47tB-jS9Hw_TgaRRLAYxxLiMcFJyJVRORcJpLggtSglAVVJGhCVYirJkPGIqyUspoICcc8ZBUaFoN7g63t1Y89aA89naNLZuX2ZhSAjGPGa4pfpHqrDGOQsq21j9Ku0-Izg7ZJz9zbjF6RHf6gr2_7LZbDofcUqZoF9NN32h</recordid><startdate>201903</startdate><enddate>201903</enddate><creator>Feucht, D. W.</creator><creator>Bedrosian, P. A.</creator><creator>Sheehan, A. F.</creator><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TG</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-6786-1038</orcidid><orcidid>https://orcid.org/0000-0002-3672-4719</orcidid><orcidid>https://orcid.org/0000-0002-9629-1687</orcidid></search><sort><creationdate>201903</creationdate><title>Lithospheric Signature of Late Cenozoic Extension in Electrical Resistivity Structure of the Rio Grande Rift, New Mexico, USA</title><author>Feucht, D. W. ; Bedrosian, P. A. ; Sheehan, A. F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a3687-8e80d609d5f7fb37953b713cdaee3f9d61490a7dd4564f9bda7eceb5545ef37f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Anisotropy</topic><topic>Anomalies</topic><topic>Basin and Range</topic><topic>Cenozoic</topic><topic>Computational fluid dynamics</topic><topic>Conductivity</topic><topic>Conductors</topic><topic>Data</topic><topic>Earth mantle</topic><topic>Electrical resistivity</topic><topic>Fault zones</topic><topic>Faults</topic><topic>Fluids</topic><topic>Geology</topic><topic>Geophysical studies</topic><topic>Geophysics</topic><topic>Great Plains</topic><topic>Inversions</topic><topic>Lava</topic><topic>Lithosphere</topic><topic>Magma</topic><topic>magnetotellurics</topic><topic>Modelling</topic><topic>partial melt</topic><topic>Profiles</topic><topic>Rio Grande rift</topic><topic>Seismic tomography</topic><topic>Tomography</topic><topic>Upper mantle</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Feucht, D. W.</creatorcontrib><creatorcontrib>Bedrosian, P. A.</creatorcontrib><creatorcontrib>Sheehan, A. F.</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of geophysical research. Solid earth</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Feucht, D. W.</au><au>Bedrosian, P. A.</au><au>Sheehan, A. F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lithospheric Signature of Late Cenozoic Extension in Electrical Resistivity Structure of the Rio Grande Rift, New Mexico, USA</atitle><jtitle>Journal of geophysical research. Solid earth</jtitle><date>2019-03</date><risdate>2019</risdate><volume>124</volume><issue>3</issue><spage>2331</spage><epage>2351</epage><pages>2331-2351</pages><issn>2169-9313</issn><eissn>2169-9356</eissn><abstract>We present electrical resistivity models of the crust and upper mantle from two‐dimensional (2‐D) inversion of magnetotelluric (MT) data collected in the Rio Grande rift, New Mexico, USA. Previous geophysical studies of the lithosphere beneath the rift identified a low‐velocity zone several hundred kilometers wide, suggesting that the upper mantle is characterized by a very broad zone of modified lithosphere. In contrast, the surface expression of the rift (e.g., high‐angle normal faults and synrift sedimentary units) is confined to a narrow region a few tens of kilometers wide about the rift axis. MT data are uniquely suited to probing the depths of the lithosphere that fill the gap between surface geology and body wave seismic tomography, namely the middle to lower crust and uppermost mantle. We model the electrical resistivity structure of the lithosphere along two east‐west trending profiles straddling the rift axis at the latitudes of 36.2 and 32.0°N. We present results from both isotropic and anisotropic 2‐D inversions of MT data along these profiles, with a strong preference for the latter in our interpretation. A key feature of the anisotropic resistivity modeling is a broad (~200‐km wide) zone of enhanced conductivity (&lt;20 Ωm) in the middle to lower crust imaged beneath both profiles. We attribute this lower crustal conductor to the accumulation of free saline fluids and partial melt, a direct result of magmatic activity along the rift. High‐conductivity anomalies in the midcrust and upper mantle are interpreted as fault zone alteration and partial melt, respectively. Key Points We image 2‐D anisotropic electric resistivity structure beneath the Rio Grande rift in New Mexico, USA, to depths of 200 km The lower crust beneath and laterally adjacent to the rift is exceptionally conductive along the entire rift axis The Rio Grande rift is electrically distinct from the Southern Basin and Range, the Colorado Plateau, and the Great Plains</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2018JB016242</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-6786-1038</orcidid><orcidid>https://orcid.org/0000-0002-3672-4719</orcidid><orcidid>https://orcid.org/0000-0002-9629-1687</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-9313
ispartof Journal of geophysical research. Solid earth, 2019-03, Vol.124 (3), p.2331-2351
issn 2169-9313
2169-9356
language eng
recordid cdi_proquest_journals_2211005840
source Wiley Journals; Wiley Online Library (Open Access Collection)
subjects Anisotropy
Anomalies
Basin and Range
Cenozoic
Computational fluid dynamics
Conductivity
Conductors
Data
Earth mantle
Electrical resistivity
Fault zones
Faults
Fluids
Geology
Geophysical studies
Geophysics
Great Plains
Inversions
Lava
Lithosphere
Magma
magnetotellurics
Modelling
partial melt
Profiles
Rio Grande rift
Seismic tomography
Tomography
Upper mantle
title Lithospheric Signature of Late Cenozoic Extension in Electrical Resistivity Structure of the Rio Grande Rift, New Mexico, USA
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T05%3A09%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lithospheric%20Signature%20of%20Late%20Cenozoic%20Extension%20in%20Electrical%20Resistivity%20Structure%20of%20the%20Rio%20Grande%20Rift,%20New%20Mexico,%20USA&rft.jtitle=Journal%20of%20geophysical%20research.%20Solid%20earth&rft.au=Feucht,%20D.%20W.&rft.date=2019-03&rft.volume=124&rft.issue=3&rft.spage=2331&rft.epage=2351&rft.pages=2331-2351&rft.issn=2169-9313&rft.eissn=2169-9356&rft_id=info:doi/10.1029/2018JB016242&rft_dat=%3Cproquest_cross%3E2211005840%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2211005840&rft_id=info:pmid/&rfr_iscdi=true