Homology of the family of hyperelliptic curves

Homology of braid groups and Artin groups can be related to the study of spaces of curves. We completely calculate the integral homology of the family of smooth curves of genus g with one boundary component, that are double coverings of the disk ramified over n = 2 g +1 points. The main part of such...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Israel journal of mathematics 2019-03, Vol.230 (2), p.653-692
Hauptverfasser: Callegaro, Filippo, Salvetti, Mario
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 692
container_issue 2
container_start_page 653
container_title Israel journal of mathematics
container_volume 230
creator Callegaro, Filippo
Salvetti, Mario
description Homology of braid groups and Artin groups can be related to the study of spaces of curves. We completely calculate the integral homology of the family of smooth curves of genus g with one boundary component, that are double coverings of the disk ramified over n = 2 g +1 points. The main part of such homology is described by the homology of the braid group with coefficients in a symplectic representation, namely the braid group Br n acts on the first homology group of a genus g surface via Dehn twists. Our computations show that such groups have only 2-torsion. We also investigate stabilization properties and provide Poincaré series, for both unstable and stable homology.
doi_str_mv 10.1007/s11856-019-1832-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2210992986</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2210992986</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-2d218a782df9237a481fcd743b0c3275b36e98a729cce1ec126cb8d450c448893</originalsourceid><addsrcrecordid>eNp1kFFLwzAUhYMoWKc_wLeCz5m5N02TPMpQJwx80efQpunW0S41aYX9e7tV8Mmny4HvnAsfIffAlsCYfIwASuSUgaagOFJ-QRIQuaBKAFyShDEEiiDxmtzEuGdMcAk8Icu173zrt8fU1-mwc2lddE17Trtj74Jr26YfGpvaMXy7eEuu6qKN7u73Lsjny_PHak03769vq6cNtRzygWKFoAqpsKo1cllkCmpbyYyXzHKUouS50xOA2loHzgLmtlRVJpjNMqU0X5CHebcP_mt0cTB7P4bD9NIgAtMatconCmbKBh9jcLXpQ9MV4WiAmZMWM2sxkxZz0mL41MG5Eyf2sHXhb_n_0g-5YmNy</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2210992986</pqid></control><display><type>article</type><title>Homology of the family of hyperelliptic curves</title><source>Springer Nature - Complete Springer Journals</source><creator>Callegaro, Filippo ; Salvetti, Mario</creator><creatorcontrib>Callegaro, Filippo ; Salvetti, Mario</creatorcontrib><description>Homology of braid groups and Artin groups can be related to the study of spaces of curves. We completely calculate the integral homology of the family of smooth curves of genus g with one boundary component, that are double coverings of the disk ramified over n = 2 g +1 points. The main part of such homology is described by the homology of the braid group with coefficients in a symplectic representation, namely the braid group Br n acts on the first homology group of a genus g surface via Dehn twists. Our computations show that such groups have only 2-torsion. We also investigate stabilization properties and provide Poincaré series, for both unstable and stable homology.</description><identifier>ISSN: 0021-2172</identifier><identifier>EISSN: 1565-8511</identifier><identifier>DOI: 10.1007/s11856-019-1832-3</identifier><language>eng</language><publisher>Jerusalem: The Hebrew University Magnes Press</publisher><subject>Algebra ; Analysis ; Applications of Mathematics ; Braid theory ; Group Theory and Generalizations ; Homology ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Theoretical</subject><ispartof>Israel journal of mathematics, 2019-03, Vol.230 (2), p.653-692</ispartof><rights>The Hebrew University of Jerusalem 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-2d218a782df9237a481fcd743b0c3275b36e98a729cce1ec126cb8d450c448893</citedby><cites>FETCH-LOGICAL-c316t-2d218a782df9237a481fcd743b0c3275b36e98a729cce1ec126cb8d450c448893</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11856-019-1832-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11856-019-1832-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Callegaro, Filippo</creatorcontrib><creatorcontrib>Salvetti, Mario</creatorcontrib><title>Homology of the family of hyperelliptic curves</title><title>Israel journal of mathematics</title><addtitle>Isr. J. Math</addtitle><description>Homology of braid groups and Artin groups can be related to the study of spaces of curves. We completely calculate the integral homology of the family of smooth curves of genus g with one boundary component, that are double coverings of the disk ramified over n = 2 g +1 points. The main part of such homology is described by the homology of the braid group with coefficients in a symplectic representation, namely the braid group Br n acts on the first homology group of a genus g surface via Dehn twists. Our computations show that such groups have only 2-torsion. We also investigate stabilization properties and provide Poincaré series, for both unstable and stable homology.</description><subject>Algebra</subject><subject>Analysis</subject><subject>Applications of Mathematics</subject><subject>Braid theory</subject><subject>Group Theory and Generalizations</subject><subject>Homology</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Theoretical</subject><issn>0021-2172</issn><issn>1565-8511</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kFFLwzAUhYMoWKc_wLeCz5m5N02TPMpQJwx80efQpunW0S41aYX9e7tV8Mmny4HvnAsfIffAlsCYfIwASuSUgaagOFJ-QRIQuaBKAFyShDEEiiDxmtzEuGdMcAk8Icu173zrt8fU1-mwc2lddE17Trtj74Jr26YfGpvaMXy7eEuu6qKN7u73Lsjny_PHak03769vq6cNtRzygWKFoAqpsKo1cllkCmpbyYyXzHKUouS50xOA2loHzgLmtlRVJpjNMqU0X5CHebcP_mt0cTB7P4bD9NIgAtMatconCmbKBh9jcLXpQ9MV4WiAmZMWM2sxkxZz0mL41MG5Eyf2sHXhb_n_0g-5YmNy</recordid><startdate>20190301</startdate><enddate>20190301</enddate><creator>Callegaro, Filippo</creator><creator>Salvetti, Mario</creator><general>The Hebrew University Magnes Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20190301</creationdate><title>Homology of the family of hyperelliptic curves</title><author>Callegaro, Filippo ; Salvetti, Mario</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-2d218a782df9237a481fcd743b0c3275b36e98a729cce1ec126cb8d450c448893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algebra</topic><topic>Analysis</topic><topic>Applications of Mathematics</topic><topic>Braid theory</topic><topic>Group Theory and Generalizations</topic><topic>Homology</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Callegaro, Filippo</creatorcontrib><creatorcontrib>Salvetti, Mario</creatorcontrib><collection>CrossRef</collection><jtitle>Israel journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Callegaro, Filippo</au><au>Salvetti, Mario</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Homology of the family of hyperelliptic curves</atitle><jtitle>Israel journal of mathematics</jtitle><stitle>Isr. J. Math</stitle><date>2019-03-01</date><risdate>2019</risdate><volume>230</volume><issue>2</issue><spage>653</spage><epage>692</epage><pages>653-692</pages><issn>0021-2172</issn><eissn>1565-8511</eissn><abstract>Homology of braid groups and Artin groups can be related to the study of spaces of curves. We completely calculate the integral homology of the family of smooth curves of genus g with one boundary component, that are double coverings of the disk ramified over n = 2 g +1 points. The main part of such homology is described by the homology of the braid group with coefficients in a symplectic representation, namely the braid group Br n acts on the first homology group of a genus g surface via Dehn twists. Our computations show that such groups have only 2-torsion. We also investigate stabilization properties and provide Poincaré series, for both unstable and stable homology.</abstract><cop>Jerusalem</cop><pub>The Hebrew University Magnes Press</pub><doi>10.1007/s11856-019-1832-3</doi><tpages>40</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-2172
ispartof Israel journal of mathematics, 2019-03, Vol.230 (2), p.653-692
issn 0021-2172
1565-8511
language eng
recordid cdi_proquest_journals_2210992986
source Springer Nature - Complete Springer Journals
subjects Algebra
Analysis
Applications of Mathematics
Braid theory
Group Theory and Generalizations
Homology
Mathematical and Computational Physics
Mathematics
Mathematics and Statistics
Theoretical
title Homology of the family of hyperelliptic curves
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T00%3A51%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Homology%20of%20the%20family%20of%20hyperelliptic%20curves&rft.jtitle=Israel%20journal%20of%20mathematics&rft.au=Callegaro,%20Filippo&rft.date=2019-03-01&rft.volume=230&rft.issue=2&rft.spage=653&rft.epage=692&rft.pages=653-692&rft.issn=0021-2172&rft.eissn=1565-8511&rft_id=info:doi/10.1007/s11856-019-1832-3&rft_dat=%3Cproquest_cross%3E2210992986%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2210992986&rft_id=info:pmid/&rfr_iscdi=true