LU triangularization extreme learning machine in EEG cognitive task classification

Electroencephalography (EEG) has been used as a promising tool for investigation of brain activity during cognitive processes. The aim of this study is to reveal whether EEG signals can be used for classifying cognitive processes: arithmetic tasks and text reading. A recently introduced EEG database...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural computing & applications 2019-04, Vol.31 (4), p.1117-1126
Hauptverfasser: Kutlu, Yakup, Yayık, Apdullah, Yildirim, Esen, Yildirim, Serdar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1126
container_issue 4
container_start_page 1117
container_title Neural computing & applications
container_volume 31
creator Kutlu, Yakup
Yayık, Apdullah
Yildirim, Esen
Yildirim, Serdar
description Electroencephalography (EEG) has been used as a promising tool for investigation of brain activity during cognitive processes. The aim of this study is to reveal whether EEG signals can be used for classifying cognitive processes: arithmetic tasks and text reading. A recently introduced EEG database, which is constructed from 18 healthy subjects during a slide show including 60 slides of simple arithmetic tasks and easily readable texts, is used for this purpose. Multi-order difference plot-based time-domain attributes, number of values in specified regions after scattering the sequential difference values with several degrees, are extracted. For classification, improved extreme learning machine (ELM) scheme, namely luELM, by the use of lower–upper triangularization method instead of singular value decomposition which has disadvantages when used with huge data is proposed. As a result, higher accuracy results are achieved with reduced training time for proposed luELM classifier than traditional ELM classifier for both subject-dependent and subject-independent analysis.
doi_str_mv 10.1007/s00521-017-3142-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2210992901</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2210992901</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-b34166b84cbd4adc022e5a3fa71b0df051540fcddf407bf77405e7663c12ee8a3</originalsourceid><addsrcrecordid>eNp1kE1LxDAURYMoOI7-AHcB19X3kvRrKcM4CgOCOOuQpknN2EnHpBX119uxgitXb3HvuQ8OIZcI1wiQ30SAlGECmCccBUvwiMxQcJ5wSItjMoNSjGkm-Ck5i3ELACIr0hl5Wm9oH5zyzdCq4L5U7zpPzUcfzM7Q1qjgnW_oTukX5w11ni6XK6q7xrvevRvaq_hKdatidNbpH_qcnFjVRnPxe-dkc7d8Xtwn68fVw-J2nWiOWZ9UXGCWVYXQVS1UrYExkypuVY4V1BZSTAVYXddWQF7ZPBeQmjzLuEZmTKH4nFxNu_vQvQ0m9nLbDcGPLyVjCGXJSsCxhVNLhy7GYKzcB7dT4VMiyIM6OamTozp5UCcPDJuYOHZ9Y8Lf8v_QN3MjcZQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2210992901</pqid></control><display><type>article</type><title>LU triangularization extreme learning machine in EEG cognitive task classification</title><source>Springer Nature - Complete Springer Journals</source><creator>Kutlu, Yakup ; Yayık, Apdullah ; Yildirim, Esen ; Yildirim, Serdar</creator><creatorcontrib>Kutlu, Yakup ; Yayık, Apdullah ; Yildirim, Esen ; Yildirim, Serdar</creatorcontrib><description>Electroencephalography (EEG) has been used as a promising tool for investigation of brain activity during cognitive processes. The aim of this study is to reveal whether EEG signals can be used for classifying cognitive processes: arithmetic tasks and text reading. A recently introduced EEG database, which is constructed from 18 healthy subjects during a slide show including 60 slides of simple arithmetic tasks and easily readable texts, is used for this purpose. Multi-order difference plot-based time-domain attributes, number of values in specified regions after scattering the sequential difference values with several degrees, are extracted. For classification, improved extreme learning machine (ELM) scheme, namely luELM, by the use of lower–upper triangularization method instead of singular value decomposition which has disadvantages when used with huge data is proposed. As a result, higher accuracy results are achieved with reduced training time for proposed luELM classifier than traditional ELM classifier for both subject-dependent and subject-independent analysis.</description><identifier>ISSN: 0941-0643</identifier><identifier>EISSN: 1433-3058</identifier><identifier>DOI: 10.1007/s00521-017-3142-1</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Arithmetic ; Artificial Intelligence ; Brain ; Classification ; Classifiers ; Cognition &amp; reasoning ; Cognitive tasks ; Computational Biology/Bioinformatics ; Computational Science and Engineering ; Computer Science ; Data Mining and Knowledge Discovery ; Electroencephalography ; Image Processing and Computer Vision ; Neural networks ; Original Article ; Probability and Statistics in Computer Science ; Signal processing ; Singular value decomposition</subject><ispartof>Neural computing &amp; applications, 2019-04, Vol.31 (4), p.1117-1126</ispartof><rights>The Natural Computing Applications Forum 2017</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-b34166b84cbd4adc022e5a3fa71b0df051540fcddf407bf77405e7663c12ee8a3</citedby><cites>FETCH-LOGICAL-c316t-b34166b84cbd4adc022e5a3fa71b0df051540fcddf407bf77405e7663c12ee8a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00521-017-3142-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00521-017-3142-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Kutlu, Yakup</creatorcontrib><creatorcontrib>Yayık, Apdullah</creatorcontrib><creatorcontrib>Yildirim, Esen</creatorcontrib><creatorcontrib>Yildirim, Serdar</creatorcontrib><title>LU triangularization extreme learning machine in EEG cognitive task classification</title><title>Neural computing &amp; applications</title><addtitle>Neural Comput &amp; Applic</addtitle><description>Electroencephalography (EEG) has been used as a promising tool for investigation of brain activity during cognitive processes. The aim of this study is to reveal whether EEG signals can be used for classifying cognitive processes: arithmetic tasks and text reading. A recently introduced EEG database, which is constructed from 18 healthy subjects during a slide show including 60 slides of simple arithmetic tasks and easily readable texts, is used for this purpose. Multi-order difference plot-based time-domain attributes, number of values in specified regions after scattering the sequential difference values with several degrees, are extracted. For classification, improved extreme learning machine (ELM) scheme, namely luELM, by the use of lower–upper triangularization method instead of singular value decomposition which has disadvantages when used with huge data is proposed. As a result, higher accuracy results are achieved with reduced training time for proposed luELM classifier than traditional ELM classifier for both subject-dependent and subject-independent analysis.</description><subject>Arithmetic</subject><subject>Artificial Intelligence</subject><subject>Brain</subject><subject>Classification</subject><subject>Classifiers</subject><subject>Cognition &amp; reasoning</subject><subject>Cognitive tasks</subject><subject>Computational Biology/Bioinformatics</subject><subject>Computational Science and Engineering</subject><subject>Computer Science</subject><subject>Data Mining and Knowledge Discovery</subject><subject>Electroencephalography</subject><subject>Image Processing and Computer Vision</subject><subject>Neural networks</subject><subject>Original Article</subject><subject>Probability and Statistics in Computer Science</subject><subject>Signal processing</subject><subject>Singular value decomposition</subject><issn>0941-0643</issn><issn>1433-3058</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LxDAURYMoOI7-AHcB19X3kvRrKcM4CgOCOOuQpknN2EnHpBX119uxgitXb3HvuQ8OIZcI1wiQ30SAlGECmCccBUvwiMxQcJ5wSItjMoNSjGkm-Ck5i3ELACIr0hl5Wm9oH5zyzdCq4L5U7zpPzUcfzM7Q1qjgnW_oTukX5w11ni6XK6q7xrvevRvaq_hKdatidNbpH_qcnFjVRnPxe-dkc7d8Xtwn68fVw-J2nWiOWZ9UXGCWVYXQVS1UrYExkypuVY4V1BZSTAVYXddWQF7ZPBeQmjzLuEZmTKH4nFxNu_vQvQ0m9nLbDcGPLyVjCGXJSsCxhVNLhy7GYKzcB7dT4VMiyIM6OamTozp5UCcPDJuYOHZ9Y8Lf8v_QN3MjcZQ</recordid><startdate>20190401</startdate><enddate>20190401</enddate><creator>Kutlu, Yakup</creator><creator>Yayık, Apdullah</creator><creator>Yildirim, Esen</creator><creator>Yildirim, Serdar</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20190401</creationdate><title>LU triangularization extreme learning machine in EEG cognitive task classification</title><author>Kutlu, Yakup ; Yayık, Apdullah ; Yildirim, Esen ; Yildirim, Serdar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-b34166b84cbd4adc022e5a3fa71b0df051540fcddf407bf77405e7663c12ee8a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Arithmetic</topic><topic>Artificial Intelligence</topic><topic>Brain</topic><topic>Classification</topic><topic>Classifiers</topic><topic>Cognition &amp; reasoning</topic><topic>Cognitive tasks</topic><topic>Computational Biology/Bioinformatics</topic><topic>Computational Science and Engineering</topic><topic>Computer Science</topic><topic>Data Mining and Knowledge Discovery</topic><topic>Electroencephalography</topic><topic>Image Processing and Computer Vision</topic><topic>Neural networks</topic><topic>Original Article</topic><topic>Probability and Statistics in Computer Science</topic><topic>Signal processing</topic><topic>Singular value decomposition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kutlu, Yakup</creatorcontrib><creatorcontrib>Yayık, Apdullah</creatorcontrib><creatorcontrib>Yildirim, Esen</creatorcontrib><creatorcontrib>Yildirim, Serdar</creatorcontrib><collection>CrossRef</collection><jtitle>Neural computing &amp; applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kutlu, Yakup</au><au>Yayık, Apdullah</au><au>Yildirim, Esen</au><au>Yildirim, Serdar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>LU triangularization extreme learning machine in EEG cognitive task classification</atitle><jtitle>Neural computing &amp; applications</jtitle><stitle>Neural Comput &amp; Applic</stitle><date>2019-04-01</date><risdate>2019</risdate><volume>31</volume><issue>4</issue><spage>1117</spage><epage>1126</epage><pages>1117-1126</pages><issn>0941-0643</issn><eissn>1433-3058</eissn><abstract>Electroencephalography (EEG) has been used as a promising tool for investigation of brain activity during cognitive processes. The aim of this study is to reveal whether EEG signals can be used for classifying cognitive processes: arithmetic tasks and text reading. A recently introduced EEG database, which is constructed from 18 healthy subjects during a slide show including 60 slides of simple arithmetic tasks and easily readable texts, is used for this purpose. Multi-order difference plot-based time-domain attributes, number of values in specified regions after scattering the sequential difference values with several degrees, are extracted. For classification, improved extreme learning machine (ELM) scheme, namely luELM, by the use of lower–upper triangularization method instead of singular value decomposition which has disadvantages when used with huge data is proposed. As a result, higher accuracy results are achieved with reduced training time for proposed luELM classifier than traditional ELM classifier for both subject-dependent and subject-independent analysis.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00521-017-3142-1</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0941-0643
ispartof Neural computing & applications, 2019-04, Vol.31 (4), p.1117-1126
issn 0941-0643
1433-3058
language eng
recordid cdi_proquest_journals_2210992901
source Springer Nature - Complete Springer Journals
subjects Arithmetic
Artificial Intelligence
Brain
Classification
Classifiers
Cognition & reasoning
Cognitive tasks
Computational Biology/Bioinformatics
Computational Science and Engineering
Computer Science
Data Mining and Knowledge Discovery
Electroencephalography
Image Processing and Computer Vision
Neural networks
Original Article
Probability and Statistics in Computer Science
Signal processing
Singular value decomposition
title LU triangularization extreme learning machine in EEG cognitive task classification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T20%3A46%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=LU%20triangularization%20extreme%20learning%20machine%20in%20EEG%20cognitive%20task%20classification&rft.jtitle=Neural%20computing%20&%20applications&rft.au=Kutlu,%20Yakup&rft.date=2019-04-01&rft.volume=31&rft.issue=4&rft.spage=1117&rft.epage=1126&rft.pages=1117-1126&rft.issn=0941-0643&rft.eissn=1433-3058&rft_id=info:doi/10.1007/s00521-017-3142-1&rft_dat=%3Cproquest_cross%3E2210992901%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2210992901&rft_id=info:pmid/&rfr_iscdi=true