LU triangularization extreme learning machine in EEG cognitive task classification
Electroencephalography (EEG) has been used as a promising tool for investigation of brain activity during cognitive processes. The aim of this study is to reveal whether EEG signals can be used for classifying cognitive processes: arithmetic tasks and text reading. A recently introduced EEG database...
Gespeichert in:
Veröffentlicht in: | Neural computing & applications 2019-04, Vol.31 (4), p.1117-1126 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1126 |
---|---|
container_issue | 4 |
container_start_page | 1117 |
container_title | Neural computing & applications |
container_volume | 31 |
creator | Kutlu, Yakup Yayık, Apdullah Yildirim, Esen Yildirim, Serdar |
description | Electroencephalography (EEG) has been used as a promising tool for investigation of brain activity during cognitive processes. The aim of this study is to reveal whether EEG signals can be used for classifying cognitive processes: arithmetic tasks and text reading. A recently introduced EEG database, which is constructed from 18 healthy subjects during a slide show including 60 slides of simple arithmetic tasks and easily readable texts, is used for this purpose. Multi-order difference plot-based time-domain attributes, number of values in specified regions after scattering the sequential difference values with several degrees, are extracted. For classification, improved extreme learning machine (ELM) scheme, namely luELM, by the use of lower–upper triangularization method instead of singular value decomposition which has disadvantages when used with huge data is proposed. As a result, higher accuracy results are achieved with reduced training time for proposed luELM classifier than traditional ELM classifier for both subject-dependent and subject-independent analysis. |
doi_str_mv | 10.1007/s00521-017-3142-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2210992901</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2210992901</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-b34166b84cbd4adc022e5a3fa71b0df051540fcddf407bf77405e7663c12ee8a3</originalsourceid><addsrcrecordid>eNp1kE1LxDAURYMoOI7-AHcB19X3kvRrKcM4CgOCOOuQpknN2EnHpBX119uxgitXb3HvuQ8OIZcI1wiQ30SAlGECmCccBUvwiMxQcJ5wSItjMoNSjGkm-Ck5i3ELACIr0hl5Wm9oH5zyzdCq4L5U7zpPzUcfzM7Q1qjgnW_oTukX5w11ni6XK6q7xrvevRvaq_hKdatidNbpH_qcnFjVRnPxe-dkc7d8Xtwn68fVw-J2nWiOWZ9UXGCWVYXQVS1UrYExkypuVY4V1BZSTAVYXddWQF7ZPBeQmjzLuEZmTKH4nFxNu_vQvQ0m9nLbDcGPLyVjCGXJSsCxhVNLhy7GYKzcB7dT4VMiyIM6OamTozp5UCcPDJuYOHZ9Y8Lf8v_QN3MjcZQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2210992901</pqid></control><display><type>article</type><title>LU triangularization extreme learning machine in EEG cognitive task classification</title><source>Springer Nature - Complete Springer Journals</source><creator>Kutlu, Yakup ; Yayık, Apdullah ; Yildirim, Esen ; Yildirim, Serdar</creator><creatorcontrib>Kutlu, Yakup ; Yayık, Apdullah ; Yildirim, Esen ; Yildirim, Serdar</creatorcontrib><description>Electroencephalography (EEG) has been used as a promising tool for investigation of brain activity during cognitive processes. The aim of this study is to reveal whether EEG signals can be used for classifying cognitive processes: arithmetic tasks and text reading. A recently introduced EEG database, which is constructed from 18 healthy subjects during a slide show including 60 slides of simple arithmetic tasks and easily readable texts, is used for this purpose. Multi-order difference plot-based time-domain attributes, number of values in specified regions after scattering the sequential difference values with several degrees, are extracted. For classification, improved extreme learning machine (ELM) scheme, namely luELM, by the use of lower–upper triangularization method instead of singular value decomposition which has disadvantages when used with huge data is proposed. As a result, higher accuracy results are achieved with reduced training time for proposed luELM classifier than traditional ELM classifier for both subject-dependent and subject-independent analysis.</description><identifier>ISSN: 0941-0643</identifier><identifier>EISSN: 1433-3058</identifier><identifier>DOI: 10.1007/s00521-017-3142-1</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Arithmetic ; Artificial Intelligence ; Brain ; Classification ; Classifiers ; Cognition & reasoning ; Cognitive tasks ; Computational Biology/Bioinformatics ; Computational Science and Engineering ; Computer Science ; Data Mining and Knowledge Discovery ; Electroencephalography ; Image Processing and Computer Vision ; Neural networks ; Original Article ; Probability and Statistics in Computer Science ; Signal processing ; Singular value decomposition</subject><ispartof>Neural computing & applications, 2019-04, Vol.31 (4), p.1117-1126</ispartof><rights>The Natural Computing Applications Forum 2017</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-b34166b84cbd4adc022e5a3fa71b0df051540fcddf407bf77405e7663c12ee8a3</citedby><cites>FETCH-LOGICAL-c316t-b34166b84cbd4adc022e5a3fa71b0df051540fcddf407bf77405e7663c12ee8a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00521-017-3142-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00521-017-3142-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Kutlu, Yakup</creatorcontrib><creatorcontrib>Yayık, Apdullah</creatorcontrib><creatorcontrib>Yildirim, Esen</creatorcontrib><creatorcontrib>Yildirim, Serdar</creatorcontrib><title>LU triangularization extreme learning machine in EEG cognitive task classification</title><title>Neural computing & applications</title><addtitle>Neural Comput & Applic</addtitle><description>Electroencephalography (EEG) has been used as a promising tool for investigation of brain activity during cognitive processes. The aim of this study is to reveal whether EEG signals can be used for classifying cognitive processes: arithmetic tasks and text reading. A recently introduced EEG database, which is constructed from 18 healthy subjects during a slide show including 60 slides of simple arithmetic tasks and easily readable texts, is used for this purpose. Multi-order difference plot-based time-domain attributes, number of values in specified regions after scattering the sequential difference values with several degrees, are extracted. For classification, improved extreme learning machine (ELM) scheme, namely luELM, by the use of lower–upper triangularization method instead of singular value decomposition which has disadvantages when used with huge data is proposed. As a result, higher accuracy results are achieved with reduced training time for proposed luELM classifier than traditional ELM classifier for both subject-dependent and subject-independent analysis.</description><subject>Arithmetic</subject><subject>Artificial Intelligence</subject><subject>Brain</subject><subject>Classification</subject><subject>Classifiers</subject><subject>Cognition & reasoning</subject><subject>Cognitive tasks</subject><subject>Computational Biology/Bioinformatics</subject><subject>Computational Science and Engineering</subject><subject>Computer Science</subject><subject>Data Mining and Knowledge Discovery</subject><subject>Electroencephalography</subject><subject>Image Processing and Computer Vision</subject><subject>Neural networks</subject><subject>Original Article</subject><subject>Probability and Statistics in Computer Science</subject><subject>Signal processing</subject><subject>Singular value decomposition</subject><issn>0941-0643</issn><issn>1433-3058</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LxDAURYMoOI7-AHcB19X3kvRrKcM4CgOCOOuQpknN2EnHpBX119uxgitXb3HvuQ8OIZcI1wiQ30SAlGECmCccBUvwiMxQcJ5wSItjMoNSjGkm-Ck5i3ELACIr0hl5Wm9oH5zyzdCq4L5U7zpPzUcfzM7Q1qjgnW_oTukX5w11ni6XK6q7xrvevRvaq_hKdatidNbpH_qcnFjVRnPxe-dkc7d8Xtwn68fVw-J2nWiOWZ9UXGCWVYXQVS1UrYExkypuVY4V1BZSTAVYXddWQF7ZPBeQmjzLuEZmTKH4nFxNu_vQvQ0m9nLbDcGPLyVjCGXJSsCxhVNLhy7GYKzcB7dT4VMiyIM6OamTozp5UCcPDJuYOHZ9Y8Lf8v_QN3MjcZQ</recordid><startdate>20190401</startdate><enddate>20190401</enddate><creator>Kutlu, Yakup</creator><creator>Yayık, Apdullah</creator><creator>Yildirim, Esen</creator><creator>Yildirim, Serdar</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20190401</creationdate><title>LU triangularization extreme learning machine in EEG cognitive task classification</title><author>Kutlu, Yakup ; Yayık, Apdullah ; Yildirim, Esen ; Yildirim, Serdar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-b34166b84cbd4adc022e5a3fa71b0df051540fcddf407bf77405e7663c12ee8a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Arithmetic</topic><topic>Artificial Intelligence</topic><topic>Brain</topic><topic>Classification</topic><topic>Classifiers</topic><topic>Cognition & reasoning</topic><topic>Cognitive tasks</topic><topic>Computational Biology/Bioinformatics</topic><topic>Computational Science and Engineering</topic><topic>Computer Science</topic><topic>Data Mining and Knowledge Discovery</topic><topic>Electroencephalography</topic><topic>Image Processing and Computer Vision</topic><topic>Neural networks</topic><topic>Original Article</topic><topic>Probability and Statistics in Computer Science</topic><topic>Signal processing</topic><topic>Singular value decomposition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kutlu, Yakup</creatorcontrib><creatorcontrib>Yayık, Apdullah</creatorcontrib><creatorcontrib>Yildirim, Esen</creatorcontrib><creatorcontrib>Yildirim, Serdar</creatorcontrib><collection>CrossRef</collection><jtitle>Neural computing & applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kutlu, Yakup</au><au>Yayık, Apdullah</au><au>Yildirim, Esen</au><au>Yildirim, Serdar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>LU triangularization extreme learning machine in EEG cognitive task classification</atitle><jtitle>Neural computing & applications</jtitle><stitle>Neural Comput & Applic</stitle><date>2019-04-01</date><risdate>2019</risdate><volume>31</volume><issue>4</issue><spage>1117</spage><epage>1126</epage><pages>1117-1126</pages><issn>0941-0643</issn><eissn>1433-3058</eissn><abstract>Electroencephalography (EEG) has been used as a promising tool for investigation of brain activity during cognitive processes. The aim of this study is to reveal whether EEG signals can be used for classifying cognitive processes: arithmetic tasks and text reading. A recently introduced EEG database, which is constructed from 18 healthy subjects during a slide show including 60 slides of simple arithmetic tasks and easily readable texts, is used for this purpose. Multi-order difference plot-based time-domain attributes, number of values in specified regions after scattering the sequential difference values with several degrees, are extracted. For classification, improved extreme learning machine (ELM) scheme, namely luELM, by the use of lower–upper triangularization method instead of singular value decomposition which has disadvantages when used with huge data is proposed. As a result, higher accuracy results are achieved with reduced training time for proposed luELM classifier than traditional ELM classifier for both subject-dependent and subject-independent analysis.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00521-017-3142-1</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0941-0643 |
ispartof | Neural computing & applications, 2019-04, Vol.31 (4), p.1117-1126 |
issn | 0941-0643 1433-3058 |
language | eng |
recordid | cdi_proquest_journals_2210992901 |
source | Springer Nature - Complete Springer Journals |
subjects | Arithmetic Artificial Intelligence Brain Classification Classifiers Cognition & reasoning Cognitive tasks Computational Biology/Bioinformatics Computational Science and Engineering Computer Science Data Mining and Knowledge Discovery Electroencephalography Image Processing and Computer Vision Neural networks Original Article Probability and Statistics in Computer Science Signal processing Singular value decomposition |
title | LU triangularization extreme learning machine in EEG cognitive task classification |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T20%3A46%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=LU%20triangularization%20extreme%20learning%20machine%20in%20EEG%20cognitive%20task%20classification&rft.jtitle=Neural%20computing%20&%20applications&rft.au=Kutlu,%20Yakup&rft.date=2019-04-01&rft.volume=31&rft.issue=4&rft.spage=1117&rft.epage=1126&rft.pages=1117-1126&rft.issn=0941-0643&rft.eissn=1433-3058&rft_id=info:doi/10.1007/s00521-017-3142-1&rft_dat=%3Cproquest_cross%3E2210992901%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2210992901&rft_id=info:pmid/&rfr_iscdi=true |