Feldspar mineralogy and rare-earth element (re)mobilization in iron-oxide copper gold systems from South Australia; a nanoscale study

Nanoscale characterization (TEM on FIB-SEM-prepared foils) was undertaken on feldspars undergoing transformation from early post-magmatic (deuteric) to hydrothermal stages in granites hosting the Olympic Dam Cu-U-Au-Ag deposit, and from the Cu-Au skarn at Hillside within the same iron-oxide copper-g...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mineralogical magazine 2018-05, Vol.82 (S1), p.S173-S197
Hauptverfasser: Kontonikas-Charos, Alkis, Ciobanu, Cristiana L, Cook, Nigel J, Ehrig, Kathy, Ismail, Roniza, Krneta, Sasha, Basak, Animesh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page S197
container_issue S1
container_start_page S173
container_title Mineralogical magazine
container_volume 82
creator Kontonikas-Charos, Alkis
Ciobanu, Cristiana L
Cook, Nigel J
Ehrig, Kathy
Ismail, Roniza
Krneta, Sasha
Basak, Animesh
description Nanoscale characterization (TEM on FIB-SEM-prepared foils) was undertaken on feldspars undergoing transformation from early post-magmatic (deuteric) to hydrothermal stages in granites hosting the Olympic Dam Cu-U-Au-Ag deposit, and from the Cu-Au skarn at Hillside within the same iron-oxide copper-gold (IOCG) province, South Australia. These include complex perthitic textures, anomalously Ba-, Fe-, or REE-rich compositions, and REE-flourocarbonate + molybdenite assemblages which pseudomorph pre-existing feldspars. Epitaxial orientations between cryptoperthite (magmatic), patch perthite (dueteric) and replacive albite (hydrothermal) within vein perthite support interface-mediated reactions between pre-existing alkali-feldspars and pervading fluid, irrespective of micro-scale crystal morphology. Such observations are consistent with a coupled dissolution-reprecipitation reaction mechanism, which assists in grain-scale element remobilization via the generation of transient interconnected microporosity. Micro-scale aggregates of hydrothermal hyalophane (Ba-rich K-feldspar), crystallizing within previously albitized areas of andesine, reveal a complex assemblage of calc-silicate, As-bearing fluorapatite and Fe oxides along reaction boundaries in the enclosing albite-sericite assemblage typical of deuteric alteration. Such inclusions are good REE repositories and their presence supports REE remobilization at the grain-scale during early hydrothermal alteration. Iron-metasomatism is recognized by nanoscale maghemite inclusions within 'red-stained' orthoclase, as well as by hematite in REE-fluorocarbonates, which reflect broader-scale zonation patterns typical for IOCG systems. Potassium-feldspar from the contact between alkali-granite and skarn at Hillside is characterized by 100-1000 ppm REE, attributable to pervasive nanoscale inclusions of calc-silicates, concentrated along microfractures, or pore-attached. Feldspar replacement by REE-fluorcarbonates at Olympic Dam and nanoscale calc-silicate inclusions in feldspar at Hillside are both strong evidence for the role of feldspars in concentrating REE during intense metasomatism. Differences in mineralogical expression are due to the availability of associated elements. Lattice-scale intergrowths of assemblages indicative of Fe-metasomatism, REE-enrichment and sulfide deposition at Olympic Dam are evidence for a spatial and temporal relationship between these processes.
doi_str_mv 10.1180/minmag.2017.081.040
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2210938999</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2210938999</sourcerecordid><originalsourceid>FETCH-LOGICAL-a381t-ced7669e52604c9684f7c2c03fd9a1578969dee5580e7de306e01f785b07f4b13</originalsourceid><addsrcrecordid>eNpNkE1r3DAQhkVJoJtNf0EvglwSgjcz8pdETyE0TSHQQ1LoTWit8VbBllzJptne87-rsDkEBuYy7_MyD2OfETaIEq5G50ez2wjAdgMSN1DBB7bCqsVCghBHbAUgmqJq8NdHdpLSEwBWWIsVe7mlwabJRJ4ZFM0QdntuvOXRRCrIxPk3p4FG8jM_j3Qxhq0b3D8zu-C5yxODL8Kzs8S7ME0U-S4Mlqd9mmlMvI9h5A9hyZTrJc2Z78wXbrg3PqTODMTTvNj9KTvuzZDo09tes5-3Xx9v7or7H9--31zfF6aUOBcd2bZpFNWigapTjaz6thMdlL1VButWqkZZorqWQK2lEhoC7FtZb6Htqy2Wa3Z24E4x_FkozfopLNHnSi0EgiqlUipflYerLoaUIvV6im40ca8R9KtvffCtX33r7Ftn3zl1eUjtKL_myHf0N8TBvqsAlDqXVKos_wMML4YP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2210938999</pqid></control><display><type>article</type><title>Feldspar mineralogy and rare-earth element (re)mobilization in iron-oxide copper gold systems from South Australia; a nanoscale study</title><source>Cambridge University Press Journals Complete</source><creator>Kontonikas-Charos, Alkis ; Ciobanu, Cristiana L ; Cook, Nigel J ; Ehrig, Kathy ; Ismail, Roniza ; Krneta, Sasha ; Basak, Animesh</creator><creatorcontrib>Kontonikas-Charos, Alkis ; Ciobanu, Cristiana L ; Cook, Nigel J ; Ehrig, Kathy ; Ismail, Roniza ; Krneta, Sasha ; Basak, Animesh</creatorcontrib><description>Nanoscale characterization (TEM on FIB-SEM-prepared foils) was undertaken on feldspars undergoing transformation from early post-magmatic (deuteric) to hydrothermal stages in granites hosting the Olympic Dam Cu-U-Au-Ag deposit, and from the Cu-Au skarn at Hillside within the same iron-oxide copper-gold (IOCG) province, South Australia. These include complex perthitic textures, anomalously Ba-, Fe-, or REE-rich compositions, and REE-flourocarbonate + molybdenite assemblages which pseudomorph pre-existing feldspars. Epitaxial orientations between cryptoperthite (magmatic), patch perthite (dueteric) and replacive albite (hydrothermal) within vein perthite support interface-mediated reactions between pre-existing alkali-feldspars and pervading fluid, irrespective of micro-scale crystal morphology. Such observations are consistent with a coupled dissolution-reprecipitation reaction mechanism, which assists in grain-scale element remobilization via the generation of transient interconnected microporosity. Micro-scale aggregates of hydrothermal hyalophane (Ba-rich K-feldspar), crystallizing within previously albitized areas of andesine, reveal a complex assemblage of calc-silicate, As-bearing fluorapatite and Fe oxides along reaction boundaries in the enclosing albite-sericite assemblage typical of deuteric alteration. Such inclusions are good REE repositories and their presence supports REE remobilization at the grain-scale during early hydrothermal alteration. Iron-metasomatism is recognized by nanoscale maghemite inclusions within 'red-stained' orthoclase, as well as by hematite in REE-fluorocarbonates, which reflect broader-scale zonation patterns typical for IOCG systems. Potassium-feldspar from the contact between alkali-granite and skarn at Hillside is characterized by 100-1000 ppm REE, attributable to pervasive nanoscale inclusions of calc-silicates, concentrated along microfractures, or pore-attached. Feldspar replacement by REE-fluorcarbonates at Olympic Dam and nanoscale calc-silicate inclusions in feldspar at Hillside are both strong evidence for the role of feldspars in concentrating REE during intense metasomatism. Differences in mineralogical expression are due to the availability of associated elements. Lattice-scale intergrowths of assemblages indicative of Fe-metasomatism, REE-enrichment and sulfide deposition at Olympic Dam are evidence for a spatial and temporal relationship between these processes.</description><identifier>ISSN: 0026-461X</identifier><identifier>EISSN: 1471-8022</identifier><identifier>DOI: 10.1180/minmag.2017.081.040</identifier><language>eng</language><publisher>London: Mineralogical Society</publisher><subject>albite ; alkali feldspar ; alkaline earth metals ; Australasia ; Australia ; barium ; chemical composition ; Copper ; copper ores ; cryptoperthite ; Economic geology ; electron microscopy data ; epitaxy ; feldspar group ; fluorapatite ; framework silicates ; Geochemistry ; Gold ; gold ores ; Granite ; hydrothermal alteration ; hydrothermal conditions ; Igneous rocks ; inclusions ; Iron ; iron oxides ; metal ores ; Metals ; metamorphic rocks ; metasomatic rocks ; metasomatism ; mineral assemblages ; mineral deposits, genesis ; mineral inclusions ; mineralization ; Mineralogy ; Minerals ; mobilization ; Olympic Dam Deposit ; oxides ; perthite ; phosphates ; plagioclase ; precious metals ; rare earths ; rock, sediment, soil ; SEM data ; Silicates ; silver ores ; skarn ; South Australia ; sulfides ; TEM data ; uranium ores ; Zonation</subject><ispartof>Mineralogical magazine, 2018-05, Vol.82 (S1), p.S173-S197</ispartof><rights>GeoRef, Copyright 2020, American Geosciences Institute. Reference includes data from GeoScienceWorld @Alexandria, VA @USA @United States. Abstract, Copyright, Mineralogical Society of Great Britain and Ireland</rights><rights>2018 This article is published under (https://creativecommons.org/licenses/by/3.0/) (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a381t-ced7669e52604c9684f7c2c03fd9a1578969dee5580e7de306e01f785b07f4b13</citedby><cites>FETCH-LOGICAL-a381t-ced7669e52604c9684f7c2c03fd9a1578969dee5580e7de306e01f785b07f4b13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Kontonikas-Charos, Alkis</creatorcontrib><creatorcontrib>Ciobanu, Cristiana L</creatorcontrib><creatorcontrib>Cook, Nigel J</creatorcontrib><creatorcontrib>Ehrig, Kathy</creatorcontrib><creatorcontrib>Ismail, Roniza</creatorcontrib><creatorcontrib>Krneta, Sasha</creatorcontrib><creatorcontrib>Basak, Animesh</creatorcontrib><title>Feldspar mineralogy and rare-earth element (re)mobilization in iron-oxide copper gold systems from South Australia; a nanoscale study</title><title>Mineralogical magazine</title><description>Nanoscale characterization (TEM on FIB-SEM-prepared foils) was undertaken on feldspars undergoing transformation from early post-magmatic (deuteric) to hydrothermal stages in granites hosting the Olympic Dam Cu-U-Au-Ag deposit, and from the Cu-Au skarn at Hillside within the same iron-oxide copper-gold (IOCG) province, South Australia. These include complex perthitic textures, anomalously Ba-, Fe-, or REE-rich compositions, and REE-flourocarbonate + molybdenite assemblages which pseudomorph pre-existing feldspars. Epitaxial orientations between cryptoperthite (magmatic), patch perthite (dueteric) and replacive albite (hydrothermal) within vein perthite support interface-mediated reactions between pre-existing alkali-feldspars and pervading fluid, irrespective of micro-scale crystal morphology. Such observations are consistent with a coupled dissolution-reprecipitation reaction mechanism, which assists in grain-scale element remobilization via the generation of transient interconnected microporosity. Micro-scale aggregates of hydrothermal hyalophane (Ba-rich K-feldspar), crystallizing within previously albitized areas of andesine, reveal a complex assemblage of calc-silicate, As-bearing fluorapatite and Fe oxides along reaction boundaries in the enclosing albite-sericite assemblage typical of deuteric alteration. Such inclusions are good REE repositories and their presence supports REE remobilization at the grain-scale during early hydrothermal alteration. Iron-metasomatism is recognized by nanoscale maghemite inclusions within 'red-stained' orthoclase, as well as by hematite in REE-fluorocarbonates, which reflect broader-scale zonation patterns typical for IOCG systems. Potassium-feldspar from the contact between alkali-granite and skarn at Hillside is characterized by 100-1000 ppm REE, attributable to pervasive nanoscale inclusions of calc-silicates, concentrated along microfractures, or pore-attached. Feldspar replacement by REE-fluorcarbonates at Olympic Dam and nanoscale calc-silicate inclusions in feldspar at Hillside are both strong evidence for the role of feldspars in concentrating REE during intense metasomatism. Differences in mineralogical expression are due to the availability of associated elements. Lattice-scale intergrowths of assemblages indicative of Fe-metasomatism, REE-enrichment and sulfide deposition at Olympic Dam are evidence for a spatial and temporal relationship between these processes.</description><subject>albite</subject><subject>alkali feldspar</subject><subject>alkaline earth metals</subject><subject>Australasia</subject><subject>Australia</subject><subject>barium</subject><subject>chemical composition</subject><subject>Copper</subject><subject>copper ores</subject><subject>cryptoperthite</subject><subject>Economic geology</subject><subject>electron microscopy data</subject><subject>epitaxy</subject><subject>feldspar group</subject><subject>fluorapatite</subject><subject>framework silicates</subject><subject>Geochemistry</subject><subject>Gold</subject><subject>gold ores</subject><subject>Granite</subject><subject>hydrothermal alteration</subject><subject>hydrothermal conditions</subject><subject>Igneous rocks</subject><subject>inclusions</subject><subject>Iron</subject><subject>iron oxides</subject><subject>metal ores</subject><subject>Metals</subject><subject>metamorphic rocks</subject><subject>metasomatic rocks</subject><subject>metasomatism</subject><subject>mineral assemblages</subject><subject>mineral deposits, genesis</subject><subject>mineral inclusions</subject><subject>mineralization</subject><subject>Mineralogy</subject><subject>Minerals</subject><subject>mobilization</subject><subject>Olympic Dam Deposit</subject><subject>oxides</subject><subject>perthite</subject><subject>phosphates</subject><subject>plagioclase</subject><subject>precious metals</subject><subject>rare earths</subject><subject>rock, sediment, soil</subject><subject>SEM data</subject><subject>Silicates</subject><subject>silver ores</subject><subject>skarn</subject><subject>South Australia</subject><subject>sulfides</subject><subject>TEM data</subject><subject>uranium ores</subject><subject>Zonation</subject><issn>0026-461X</issn><issn>1471-8022</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpNkE1r3DAQhkVJoJtNf0EvglwSgjcz8pdETyE0TSHQQ1LoTWit8VbBllzJptne87-rsDkEBuYy7_MyD2OfETaIEq5G50ez2wjAdgMSN1DBB7bCqsVCghBHbAUgmqJq8NdHdpLSEwBWWIsVe7mlwabJRJ4ZFM0QdntuvOXRRCrIxPk3p4FG8jM_j3Qxhq0b3D8zu-C5yxODL8Kzs8S7ME0U-S4Mlqd9mmlMvI9h5A9hyZTrJc2Z78wXbrg3PqTODMTTvNj9KTvuzZDo09tes5-3Xx9v7or7H9--31zfF6aUOBcd2bZpFNWigapTjaz6thMdlL1VButWqkZZorqWQK2lEhoC7FtZb6Htqy2Wa3Z24E4x_FkozfopLNHnSi0EgiqlUipflYerLoaUIvV6im40ca8R9KtvffCtX33r7Ftn3zl1eUjtKL_myHf0N8TBvqsAlDqXVKos_wMML4YP</recordid><startdate>201805</startdate><enddate>201805</enddate><creator>Kontonikas-Charos, Alkis</creator><creator>Ciobanu, Cristiana L</creator><creator>Cook, Nigel J</creator><creator>Ehrig, Kathy</creator><creator>Ismail, Roniza</creator><creator>Krneta, Sasha</creator><creator>Basak, Animesh</creator><general>Mineralogical Society</general><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RQ</scope><scope>7XB</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>U9A</scope></search><sort><creationdate>201805</creationdate><title>Feldspar mineralogy and rare-earth element (re)mobilization in iron-oxide copper gold systems from South Australia; a nanoscale study</title><author>Kontonikas-Charos, Alkis ; Ciobanu, Cristiana L ; Cook, Nigel J ; Ehrig, Kathy ; Ismail, Roniza ; Krneta, Sasha ; Basak, Animesh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a381t-ced7669e52604c9684f7c2c03fd9a1578969dee5580e7de306e01f785b07f4b13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>albite</topic><topic>alkali feldspar</topic><topic>alkaline earth metals</topic><topic>Australasia</topic><topic>Australia</topic><topic>barium</topic><topic>chemical composition</topic><topic>Copper</topic><topic>copper ores</topic><topic>cryptoperthite</topic><topic>Economic geology</topic><topic>electron microscopy data</topic><topic>epitaxy</topic><topic>feldspar group</topic><topic>fluorapatite</topic><topic>framework silicates</topic><topic>Geochemistry</topic><topic>Gold</topic><topic>gold ores</topic><topic>Granite</topic><topic>hydrothermal alteration</topic><topic>hydrothermal conditions</topic><topic>Igneous rocks</topic><topic>inclusions</topic><topic>Iron</topic><topic>iron oxides</topic><topic>metal ores</topic><topic>Metals</topic><topic>metamorphic rocks</topic><topic>metasomatic rocks</topic><topic>metasomatism</topic><topic>mineral assemblages</topic><topic>mineral deposits, genesis</topic><topic>mineral inclusions</topic><topic>mineralization</topic><topic>Mineralogy</topic><topic>Minerals</topic><topic>mobilization</topic><topic>Olympic Dam Deposit</topic><topic>oxides</topic><topic>perthite</topic><topic>phosphates</topic><topic>plagioclase</topic><topic>precious metals</topic><topic>rare earths</topic><topic>rock, sediment, soil</topic><topic>SEM data</topic><topic>Silicates</topic><topic>silver ores</topic><topic>skarn</topic><topic>South Australia</topic><topic>sulfides</topic><topic>TEM data</topic><topic>uranium ores</topic><topic>Zonation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kontonikas-Charos, Alkis</creatorcontrib><creatorcontrib>Ciobanu, Cristiana L</creatorcontrib><creatorcontrib>Cook, Nigel J</creatorcontrib><creatorcontrib>Ehrig, Kathy</creatorcontrib><creatorcontrib>Ismail, Roniza</creatorcontrib><creatorcontrib>Krneta, Sasha</creatorcontrib><creatorcontrib>Basak, Animesh</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Career &amp; Technical Education Database</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Mineralogical magazine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kontonikas-Charos, Alkis</au><au>Ciobanu, Cristiana L</au><au>Cook, Nigel J</au><au>Ehrig, Kathy</au><au>Ismail, Roniza</au><au>Krneta, Sasha</au><au>Basak, Animesh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Feldspar mineralogy and rare-earth element (re)mobilization in iron-oxide copper gold systems from South Australia; a nanoscale study</atitle><jtitle>Mineralogical magazine</jtitle><date>2018-05</date><risdate>2018</risdate><volume>82</volume><issue>S1</issue><spage>S173</spage><epage>S197</epage><pages>S173-S197</pages><issn>0026-461X</issn><eissn>1471-8022</eissn><abstract>Nanoscale characterization (TEM on FIB-SEM-prepared foils) was undertaken on feldspars undergoing transformation from early post-magmatic (deuteric) to hydrothermal stages in granites hosting the Olympic Dam Cu-U-Au-Ag deposit, and from the Cu-Au skarn at Hillside within the same iron-oxide copper-gold (IOCG) province, South Australia. These include complex perthitic textures, anomalously Ba-, Fe-, or REE-rich compositions, and REE-flourocarbonate + molybdenite assemblages which pseudomorph pre-existing feldspars. Epitaxial orientations between cryptoperthite (magmatic), patch perthite (dueteric) and replacive albite (hydrothermal) within vein perthite support interface-mediated reactions between pre-existing alkali-feldspars and pervading fluid, irrespective of micro-scale crystal morphology. Such observations are consistent with a coupled dissolution-reprecipitation reaction mechanism, which assists in grain-scale element remobilization via the generation of transient interconnected microporosity. Micro-scale aggregates of hydrothermal hyalophane (Ba-rich K-feldspar), crystallizing within previously albitized areas of andesine, reveal a complex assemblage of calc-silicate, As-bearing fluorapatite and Fe oxides along reaction boundaries in the enclosing albite-sericite assemblage typical of deuteric alteration. Such inclusions are good REE repositories and their presence supports REE remobilization at the grain-scale during early hydrothermal alteration. Iron-metasomatism is recognized by nanoscale maghemite inclusions within 'red-stained' orthoclase, as well as by hematite in REE-fluorocarbonates, which reflect broader-scale zonation patterns typical for IOCG systems. Potassium-feldspar from the contact between alkali-granite and skarn at Hillside is characterized by 100-1000 ppm REE, attributable to pervasive nanoscale inclusions of calc-silicates, concentrated along microfractures, or pore-attached. Feldspar replacement by REE-fluorcarbonates at Olympic Dam and nanoscale calc-silicate inclusions in feldspar at Hillside are both strong evidence for the role of feldspars in concentrating REE during intense metasomatism. Differences in mineralogical expression are due to the availability of associated elements. Lattice-scale intergrowths of assemblages indicative of Fe-metasomatism, REE-enrichment and sulfide deposition at Olympic Dam are evidence for a spatial and temporal relationship between these processes.</abstract><cop>London</cop><pub>Mineralogical Society</pub><doi>10.1180/minmag.2017.081.040</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0026-461X
ispartof Mineralogical magazine, 2018-05, Vol.82 (S1), p.S173-S197
issn 0026-461X
1471-8022
language eng
recordid cdi_proquest_journals_2210938999
source Cambridge University Press Journals Complete
subjects albite
alkali feldspar
alkaline earth metals
Australasia
Australia
barium
chemical composition
Copper
copper ores
cryptoperthite
Economic geology
electron microscopy data
epitaxy
feldspar group
fluorapatite
framework silicates
Geochemistry
Gold
gold ores
Granite
hydrothermal alteration
hydrothermal conditions
Igneous rocks
inclusions
Iron
iron oxides
metal ores
Metals
metamorphic rocks
metasomatic rocks
metasomatism
mineral assemblages
mineral deposits, genesis
mineral inclusions
mineralization
Mineralogy
Minerals
mobilization
Olympic Dam Deposit
oxides
perthite
phosphates
plagioclase
precious metals
rare earths
rock, sediment, soil
SEM data
Silicates
silver ores
skarn
South Australia
sulfides
TEM data
uranium ores
Zonation
title Feldspar mineralogy and rare-earth element (re)mobilization in iron-oxide copper gold systems from South Australia; a nanoscale study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T23%3A46%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Feldspar%20mineralogy%20and%20rare-earth%20element%20(re)mobilization%20in%20iron-oxide%20copper%20gold%20systems%20from%20South%20Australia;%20a%20nanoscale%20study&rft.jtitle=Mineralogical%20magazine&rft.au=Kontonikas-Charos,%20Alkis&rft.date=2018-05&rft.volume=82&rft.issue=S1&rft.spage=S173&rft.epage=S197&rft.pages=S173-S197&rft.issn=0026-461X&rft.eissn=1471-8022&rft_id=info:doi/10.1180/minmag.2017.081.040&rft_dat=%3Cproquest_cross%3E2210938999%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2210938999&rft_id=info:pmid/&rfr_iscdi=true