The hydrothermal alteration of carbonatite in the Fen Complex, Norway; mineralogy, geochemistry, and implications for rare-earth element resource formation

The Fen Complex in Norway consists of a ∼583 Ma composite carbonatite-ijolite-pyroxenite diatreme intrusion. Locally, high grades (up to 1.6 wt.% total REE) of rare-earth elements (REE) are found in a hydrothermally altered, hematite-rich carbonatite known as rodbergite. The progressive transformati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mineralogical magazine 2018-05, Vol.82 (S1), p.S115-S131
Hauptverfasser: Marien, Christian, Dijkstra, A. H, Wilkins, C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page S131
container_issue S1
container_start_page S115
container_title Mineralogical magazine
container_volume 82
creator Marien, Christian
Dijkstra, A. H
Wilkins, C
description The Fen Complex in Norway consists of a ∼583 Ma composite carbonatite-ijolite-pyroxenite diatreme intrusion. Locally, high grades (up to 1.6 wt.% total REE) of rare-earth elements (REE) are found in a hydrothermally altered, hematite-rich carbonatite known as rodbergite. The progressive transformation of primary igneous carbonatite to rodbergite was studied here using scanning electron microscopy and inductively coupled plasma-mass spectrometry trace-element analysis of 23 bulk samples taken along a key geological transect. A primary mineral assemblage of calcite, dolomite, apatite, pyrite, magnetite and columbite with accessory quartz, baryte, pyrochlore, fluorite and REE fluorocarbonates was found to have transformed progressively into a secondary assemblage of dolomite, Fe-dolomite, baryte, Ba-bearing phlogopite, hematite with accessory apatite, calcite, monazite-(Ce) and quartz. Textural evidence is presented for REE fluorocarbonates and apatite breaking down in igneous carbonatite, and monazite-(Ce) precipitating in rodbergite. The importance of micro-veins, interpreted as feeder fractures, containing secondary monazite and allanite, is highlighted. Textural evidence for included relics of primary apatite-rich carbonatite are also presented. These acted as a trap for monazite-(Ce) precipitation, a mechanism predicted by physical-chemical experiments. The transformation of carbonatite to rodbergite is accompanied by a 10-fold increase in REE concentrations. The highest light REE (LREE) concentrations are found in transitional vein-rich rodbergite, whereas the highest heavy REE (HREE) and Th concentrations are found within the rodbergites, suggesting partial decoupling of LREE and HREE due to the lower stability of HREE complexes in the aqueous hydrothermal fluid. The hydrothermal fluid involved in the formation of rodbergite was oxidizing and had probably interacted with country-rock gneisses. An ore deposit model for the REE-rich rodbergites is presented here which will better inform exploration strategies in the complex, and has implications for carbonatite-hosted REE resources around the world.
doi_str_mv 10.1180/minmag.2017.081.070
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2210938993</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2210938993</sourcerecordid><originalsourceid>FETCH-LOGICAL-a381t-f18fddd45fba9ef17631fa55c25007af65d40fc5f74c4672eee7ec95e696dc543</originalsourceid><addsrcrecordid>eNpNkc9uFDEMxiMEEkvpE_QSqUc6i5NJ5o84VasuIFVwKRK3KM04O1PNJFsnVdln4WXJdnvgZFn-Pn-Wf4xdCFgL0cHnZQqL3a0liHYNnVhDC2_YSqhWVB1I-ZatAGRTqUb8fs8-pPQAIJTQcsX-3o3Ix8NAMY9Ii525nTOSzVMMPHruLN3HUNqMfAq8iPgWA9_EZT_jnyv-I9KzPXzh5YLimuPucMV3GN2Iy5Qylc6GgU9FPbmXpYn7SJwsYYWW8shxxgVD5oQpPpHD43x5kX5k77ydE56_1jP2a3tzt_lW3f78-n1zfVvZuhO58qLzwzAo7e9tj160TS281dpJDdBa3-hBgXfat8qpppWI2KLrNTZ9Mzit6jN2edq7p_j4hCmbh3JJKJFGSgF93fV9XVT1SeUopkTozZ6mxdLBCDBHCuZEwRwpmELBFArF9enkKk9JbsLg8DnSPPwXAaIzJUT1UP8DsrSPqg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2210938993</pqid></control><display><type>article</type><title>The hydrothermal alteration of carbonatite in the Fen Complex, Norway; mineralogy, geochemistry, and implications for rare-earth element resource formation</title><source>Cambridge Journals</source><creator>Marien, Christian ; Dijkstra, A. H ; Wilkins, C</creator><creatorcontrib>Marien, Christian ; Dijkstra, A. H ; Wilkins, C</creatorcontrib><description>The Fen Complex in Norway consists of a ∼583 Ma composite carbonatite-ijolite-pyroxenite diatreme intrusion. Locally, high grades (up to 1.6 wt.% total REE) of rare-earth elements (REE) are found in a hydrothermally altered, hematite-rich carbonatite known as rodbergite. The progressive transformation of primary igneous carbonatite to rodbergite was studied here using scanning electron microscopy and inductively coupled plasma-mass spectrometry trace-element analysis of 23 bulk samples taken along a key geological transect. A primary mineral assemblage of calcite, dolomite, apatite, pyrite, magnetite and columbite with accessory quartz, baryte, pyrochlore, fluorite and REE fluorocarbonates was found to have transformed progressively into a secondary assemblage of dolomite, Fe-dolomite, baryte, Ba-bearing phlogopite, hematite with accessory apatite, calcite, monazite-(Ce) and quartz. Textural evidence is presented for REE fluorocarbonates and apatite breaking down in igneous carbonatite, and monazite-(Ce) precipitating in rodbergite. The importance of micro-veins, interpreted as feeder fractures, containing secondary monazite and allanite, is highlighted. Textural evidence for included relics of primary apatite-rich carbonatite are also presented. These acted as a trap for monazite-(Ce) precipitation, a mechanism predicted by physical-chemical experiments. The transformation of carbonatite to rodbergite is accompanied by a 10-fold increase in REE concentrations. The highest light REE (LREE) concentrations are found in transitional vein-rich rodbergite, whereas the highest heavy REE (HREE) and Th concentrations are found within the rodbergites, suggesting partial decoupling of LREE and HREE due to the lower stability of HREE complexes in the aqueous hydrothermal fluid. The hydrothermal fluid involved in the formation of rodbergite was oxidizing and had probably interacted with country-rock gneisses. An ore deposit model for the REE-rich rodbergites is presented here which will better inform exploration strategies in the complex, and has implications for carbonatite-hosted REE resources around the world.</description><identifier>ISSN: 0026-461X</identifier><identifier>EISSN: 1471-8022</identifier><identifier>DOI: 10.1180/minmag.2017.081.070</identifier><language>eng</language><publisher>London: Mineralogical Society</publisher><subject>accessory minerals ; actinides ; allanite ; apatite ; Calcite ; carbonates ; carbonatites ; cerium ; columbite ; country rocks ; Dolomite ; Economic geology ; electron microscopy data ; epidote group ; Europe ; Fen Complex ; Fluids ; Geochemistry ; gneisses ; hydrothermal alteration ; ICP mass spectra ; igneous rocks ; ijolite ; magnetite ; mass spectra ; Mass spectrometry ; metal ores ; metals ; metamorphic rocks ; metasomatism ; mineral assemblages ; Mineralization ; Mineralogy ; Minerals ; mobility ; monazite ; niobates ; Norway ; orthosilicates ; Oslo Rift ; oxides ; phosphates ; plutonic rocks ; Pyrite ; pyroxenite ; Quartz ; rare earth deposits ; rare earths ; rock, sediment, soil ; rodbergite ; Scandinavia ; Scanning electron microscopy ; SEM data ; silicates ; sorosilicates ; spectra ; sulfides ; Telemark Norway ; thorium ; Trace elements ; ultramafics ; Veins (geology) ; Western Europe</subject><ispartof>Mineralogical magazine, 2018-05, Vol.82 (S1), p.S115-S131</ispartof><rights>GeoRef, Copyright 2020, American Geosciences Institute. Reference includes data from GeoScienceWorld @Alexandria, VA @USA @United States. Abstract, Copyright, Mineralogical Society of Great Britain and Ireland</rights><rights>2018 This article is published under (https://creativecommons.org/licenses/by/3.0/) (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a381t-f18fddd45fba9ef17631fa55c25007af65d40fc5f74c4672eee7ec95e696dc543</citedby><cites>FETCH-LOGICAL-a381t-f18fddd45fba9ef17631fa55c25007af65d40fc5f74c4672eee7ec95e696dc543</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Marien, Christian</creatorcontrib><creatorcontrib>Dijkstra, A. H</creatorcontrib><creatorcontrib>Wilkins, C</creatorcontrib><title>The hydrothermal alteration of carbonatite in the Fen Complex, Norway; mineralogy, geochemistry, and implications for rare-earth element resource formation</title><title>Mineralogical magazine</title><description>The Fen Complex in Norway consists of a ∼583 Ma composite carbonatite-ijolite-pyroxenite diatreme intrusion. Locally, high grades (up to 1.6 wt.% total REE) of rare-earth elements (REE) are found in a hydrothermally altered, hematite-rich carbonatite known as rodbergite. The progressive transformation of primary igneous carbonatite to rodbergite was studied here using scanning electron microscopy and inductively coupled plasma-mass spectrometry trace-element analysis of 23 bulk samples taken along a key geological transect. A primary mineral assemblage of calcite, dolomite, apatite, pyrite, magnetite and columbite with accessory quartz, baryte, pyrochlore, fluorite and REE fluorocarbonates was found to have transformed progressively into a secondary assemblage of dolomite, Fe-dolomite, baryte, Ba-bearing phlogopite, hematite with accessory apatite, calcite, monazite-(Ce) and quartz. Textural evidence is presented for REE fluorocarbonates and apatite breaking down in igneous carbonatite, and monazite-(Ce) precipitating in rodbergite. The importance of micro-veins, interpreted as feeder fractures, containing secondary monazite and allanite, is highlighted. Textural evidence for included relics of primary apatite-rich carbonatite are also presented. These acted as a trap for monazite-(Ce) precipitation, a mechanism predicted by physical-chemical experiments. The transformation of carbonatite to rodbergite is accompanied by a 10-fold increase in REE concentrations. The highest light REE (LREE) concentrations are found in transitional vein-rich rodbergite, whereas the highest heavy REE (HREE) and Th concentrations are found within the rodbergites, suggesting partial decoupling of LREE and HREE due to the lower stability of HREE complexes in the aqueous hydrothermal fluid. The hydrothermal fluid involved in the formation of rodbergite was oxidizing and had probably interacted with country-rock gneisses. An ore deposit model for the REE-rich rodbergites is presented here which will better inform exploration strategies in the complex, and has implications for carbonatite-hosted REE resources around the world.</description><subject>accessory minerals</subject><subject>actinides</subject><subject>allanite</subject><subject>apatite</subject><subject>Calcite</subject><subject>carbonates</subject><subject>carbonatites</subject><subject>cerium</subject><subject>columbite</subject><subject>country rocks</subject><subject>Dolomite</subject><subject>Economic geology</subject><subject>electron microscopy data</subject><subject>epidote group</subject><subject>Europe</subject><subject>Fen Complex</subject><subject>Fluids</subject><subject>Geochemistry</subject><subject>gneisses</subject><subject>hydrothermal alteration</subject><subject>ICP mass spectra</subject><subject>igneous rocks</subject><subject>ijolite</subject><subject>magnetite</subject><subject>mass spectra</subject><subject>Mass spectrometry</subject><subject>metal ores</subject><subject>metals</subject><subject>metamorphic rocks</subject><subject>metasomatism</subject><subject>mineral assemblages</subject><subject>Mineralization</subject><subject>Mineralogy</subject><subject>Minerals</subject><subject>mobility</subject><subject>monazite</subject><subject>niobates</subject><subject>Norway</subject><subject>orthosilicates</subject><subject>Oslo Rift</subject><subject>oxides</subject><subject>phosphates</subject><subject>plutonic rocks</subject><subject>Pyrite</subject><subject>pyroxenite</subject><subject>Quartz</subject><subject>rare earth deposits</subject><subject>rare earths</subject><subject>rock, sediment, soil</subject><subject>rodbergite</subject><subject>Scandinavia</subject><subject>Scanning electron microscopy</subject><subject>SEM data</subject><subject>silicates</subject><subject>sorosilicates</subject><subject>spectra</subject><subject>sulfides</subject><subject>Telemark Norway</subject><subject>thorium</subject><subject>Trace elements</subject><subject>ultramafics</subject><subject>Veins (geology)</subject><subject>Western Europe</subject><issn>0026-461X</issn><issn>1471-8022</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpNkc9uFDEMxiMEEkvpE_QSqUc6i5NJ5o84VasuIFVwKRK3KM04O1PNJFsnVdln4WXJdnvgZFn-Pn-Wf4xdCFgL0cHnZQqL3a0liHYNnVhDC2_YSqhWVB1I-ZatAGRTqUb8fs8-pPQAIJTQcsX-3o3Ix8NAMY9Ii525nTOSzVMMPHruLN3HUNqMfAq8iPgWA9_EZT_jnyv-I9KzPXzh5YLimuPucMV3GN2Iy5Qylc6GgU9FPbmXpYn7SJwsYYWW8shxxgVD5oQpPpHD43x5kX5k77ydE56_1jP2a3tzt_lW3f78-n1zfVvZuhO58qLzwzAo7e9tj160TS281dpJDdBa3-hBgXfat8qpppWI2KLrNTZ9Mzit6jN2edq7p_j4hCmbh3JJKJFGSgF93fV9XVT1SeUopkTozZ6mxdLBCDBHCuZEwRwpmELBFArF9enkKk9JbsLg8DnSPPwXAaIzJUT1UP8DsrSPqg</recordid><startdate>201805</startdate><enddate>201805</enddate><creator>Marien, Christian</creator><creator>Dijkstra, A. H</creator><creator>Wilkins, C</creator><general>Mineralogical Society</general><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RQ</scope><scope>7XB</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>U9A</scope></search><sort><creationdate>201805</creationdate><title>The hydrothermal alteration of carbonatite in the Fen Complex, Norway; mineralogy, geochemistry, and implications for rare-earth element resource formation</title><author>Marien, Christian ; Dijkstra, A. H ; Wilkins, C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a381t-f18fddd45fba9ef17631fa55c25007af65d40fc5f74c4672eee7ec95e696dc543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>accessory minerals</topic><topic>actinides</topic><topic>allanite</topic><topic>apatite</topic><topic>Calcite</topic><topic>carbonates</topic><topic>carbonatites</topic><topic>cerium</topic><topic>columbite</topic><topic>country rocks</topic><topic>Dolomite</topic><topic>Economic geology</topic><topic>electron microscopy data</topic><topic>epidote group</topic><topic>Europe</topic><topic>Fen Complex</topic><topic>Fluids</topic><topic>Geochemistry</topic><topic>gneisses</topic><topic>hydrothermal alteration</topic><topic>ICP mass spectra</topic><topic>igneous rocks</topic><topic>ijolite</topic><topic>magnetite</topic><topic>mass spectra</topic><topic>Mass spectrometry</topic><topic>metal ores</topic><topic>metals</topic><topic>metamorphic rocks</topic><topic>metasomatism</topic><topic>mineral assemblages</topic><topic>Mineralization</topic><topic>Mineralogy</topic><topic>Minerals</topic><topic>mobility</topic><topic>monazite</topic><topic>niobates</topic><topic>Norway</topic><topic>orthosilicates</topic><topic>Oslo Rift</topic><topic>oxides</topic><topic>phosphates</topic><topic>plutonic rocks</topic><topic>Pyrite</topic><topic>pyroxenite</topic><topic>Quartz</topic><topic>rare earth deposits</topic><topic>rare earths</topic><topic>rock, sediment, soil</topic><topic>rodbergite</topic><topic>Scandinavia</topic><topic>Scanning electron microscopy</topic><topic>SEM data</topic><topic>silicates</topic><topic>sorosilicates</topic><topic>spectra</topic><topic>sulfides</topic><topic>Telemark Norway</topic><topic>thorium</topic><topic>Trace elements</topic><topic>ultramafics</topic><topic>Veins (geology)</topic><topic>Western Europe</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marien, Christian</creatorcontrib><creatorcontrib>Dijkstra, A. H</creatorcontrib><creatorcontrib>Wilkins, C</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Career &amp; Technical Education Database</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Mineralogical magazine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marien, Christian</au><au>Dijkstra, A. H</au><au>Wilkins, C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The hydrothermal alteration of carbonatite in the Fen Complex, Norway; mineralogy, geochemistry, and implications for rare-earth element resource formation</atitle><jtitle>Mineralogical magazine</jtitle><date>2018-05</date><risdate>2018</risdate><volume>82</volume><issue>S1</issue><spage>S115</spage><epage>S131</epage><pages>S115-S131</pages><issn>0026-461X</issn><eissn>1471-8022</eissn><abstract>The Fen Complex in Norway consists of a ∼583 Ma composite carbonatite-ijolite-pyroxenite diatreme intrusion. Locally, high grades (up to 1.6 wt.% total REE) of rare-earth elements (REE) are found in a hydrothermally altered, hematite-rich carbonatite known as rodbergite. The progressive transformation of primary igneous carbonatite to rodbergite was studied here using scanning electron microscopy and inductively coupled plasma-mass spectrometry trace-element analysis of 23 bulk samples taken along a key geological transect. A primary mineral assemblage of calcite, dolomite, apatite, pyrite, magnetite and columbite with accessory quartz, baryte, pyrochlore, fluorite and REE fluorocarbonates was found to have transformed progressively into a secondary assemblage of dolomite, Fe-dolomite, baryte, Ba-bearing phlogopite, hematite with accessory apatite, calcite, monazite-(Ce) and quartz. Textural evidence is presented for REE fluorocarbonates and apatite breaking down in igneous carbonatite, and monazite-(Ce) precipitating in rodbergite. The importance of micro-veins, interpreted as feeder fractures, containing secondary monazite and allanite, is highlighted. Textural evidence for included relics of primary apatite-rich carbonatite are also presented. These acted as a trap for monazite-(Ce) precipitation, a mechanism predicted by physical-chemical experiments. The transformation of carbonatite to rodbergite is accompanied by a 10-fold increase in REE concentrations. The highest light REE (LREE) concentrations are found in transitional vein-rich rodbergite, whereas the highest heavy REE (HREE) and Th concentrations are found within the rodbergites, suggesting partial decoupling of LREE and HREE due to the lower stability of HREE complexes in the aqueous hydrothermal fluid. The hydrothermal fluid involved in the formation of rodbergite was oxidizing and had probably interacted with country-rock gneisses. An ore deposit model for the REE-rich rodbergites is presented here which will better inform exploration strategies in the complex, and has implications for carbonatite-hosted REE resources around the world.</abstract><cop>London</cop><pub>Mineralogical Society</pub><doi>10.1180/minmag.2017.081.070</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0026-461X
ispartof Mineralogical magazine, 2018-05, Vol.82 (S1), p.S115-S131
issn 0026-461X
1471-8022
language eng
recordid cdi_proquest_journals_2210938993
source Cambridge Journals
subjects accessory minerals
actinides
allanite
apatite
Calcite
carbonates
carbonatites
cerium
columbite
country rocks
Dolomite
Economic geology
electron microscopy data
epidote group
Europe
Fen Complex
Fluids
Geochemistry
gneisses
hydrothermal alteration
ICP mass spectra
igneous rocks
ijolite
magnetite
mass spectra
Mass spectrometry
metal ores
metals
metamorphic rocks
metasomatism
mineral assemblages
Mineralization
Mineralogy
Minerals
mobility
monazite
niobates
Norway
orthosilicates
Oslo Rift
oxides
phosphates
plutonic rocks
Pyrite
pyroxenite
Quartz
rare earth deposits
rare earths
rock, sediment, soil
rodbergite
Scandinavia
Scanning electron microscopy
SEM data
silicates
sorosilicates
spectra
sulfides
Telemark Norway
thorium
Trace elements
ultramafics
Veins (geology)
Western Europe
title The hydrothermal alteration of carbonatite in the Fen Complex, Norway; mineralogy, geochemistry, and implications for rare-earth element resource formation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T06%3A38%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20hydrothermal%20alteration%20of%20carbonatite%20in%20the%20Fen%20Complex,%20Norway;%20mineralogy,%20geochemistry,%20and%20implications%20for%20rare-earth%20element%20resource%20formation&rft.jtitle=Mineralogical%20magazine&rft.au=Marien,%20Christian&rft.date=2018-05&rft.volume=82&rft.issue=S1&rft.spage=S115&rft.epage=S131&rft.pages=S115-S131&rft.issn=0026-461X&rft.eissn=1471-8022&rft_id=info:doi/10.1180/minmag.2017.081.070&rft_dat=%3Cproquest_cross%3E2210938993%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2210938993&rft_id=info:pmid/&rfr_iscdi=true