The hydrothermal alteration of carbonatite in the Fen Complex, Norway; mineralogy, geochemistry, and implications for rare-earth element resource formation
The Fen Complex in Norway consists of a ∼583 Ma composite carbonatite-ijolite-pyroxenite diatreme intrusion. Locally, high grades (up to 1.6 wt.% total REE) of rare-earth elements (REE) are found in a hydrothermally altered, hematite-rich carbonatite known as rodbergite. The progressive transformati...
Gespeichert in:
Veröffentlicht in: | Mineralogical magazine 2018-05, Vol.82 (S1), p.S115-S131 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | S131 |
---|---|
container_issue | S1 |
container_start_page | S115 |
container_title | Mineralogical magazine |
container_volume | 82 |
creator | Marien, Christian Dijkstra, A. H Wilkins, C |
description | The Fen Complex in Norway consists of a ∼583 Ma composite carbonatite-ijolite-pyroxenite diatreme intrusion. Locally, high grades (up to 1.6 wt.% total REE) of rare-earth elements (REE) are found in a hydrothermally altered, hematite-rich carbonatite known as rodbergite. The progressive transformation of primary igneous carbonatite to rodbergite was studied here using scanning electron microscopy and inductively coupled plasma-mass spectrometry trace-element analysis of 23 bulk samples taken along a key geological transect. A primary mineral assemblage of calcite, dolomite, apatite, pyrite, magnetite and columbite with accessory quartz, baryte, pyrochlore, fluorite and REE fluorocarbonates was found to have transformed progressively into a secondary assemblage of dolomite, Fe-dolomite, baryte, Ba-bearing phlogopite, hematite with accessory apatite, calcite, monazite-(Ce) and quartz. Textural evidence is presented for REE fluorocarbonates and apatite breaking down in igneous carbonatite, and monazite-(Ce) precipitating in rodbergite. The importance of micro-veins, interpreted as feeder fractures, containing secondary monazite and allanite, is highlighted. Textural evidence for included relics of primary apatite-rich carbonatite are also presented. These acted as a trap for monazite-(Ce) precipitation, a mechanism predicted by physical-chemical experiments. The transformation of carbonatite to rodbergite is accompanied by a 10-fold increase in REE concentrations. The highest light REE (LREE) concentrations are found in transitional vein-rich rodbergite, whereas the highest heavy REE (HREE) and Th concentrations are found within the rodbergites, suggesting partial decoupling of LREE and HREE due to the lower stability of HREE complexes in the aqueous hydrothermal fluid. The hydrothermal fluid involved in the formation of rodbergite was oxidizing and had probably interacted with country-rock gneisses. An ore deposit model for the REE-rich rodbergites is presented here which will better inform exploration strategies in the complex, and has implications for carbonatite-hosted REE resources around the world. |
doi_str_mv | 10.1180/minmag.2017.081.070 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2210938993</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2210938993</sourcerecordid><originalsourceid>FETCH-LOGICAL-a381t-f18fddd45fba9ef17631fa55c25007af65d40fc5f74c4672eee7ec95e696dc543</originalsourceid><addsrcrecordid>eNpNkc9uFDEMxiMEEkvpE_QSqUc6i5NJ5o84VasuIFVwKRK3KM04O1PNJFsnVdln4WXJdnvgZFn-Pn-Wf4xdCFgL0cHnZQqL3a0liHYNnVhDC2_YSqhWVB1I-ZatAGRTqUb8fs8-pPQAIJTQcsX-3o3Ix8NAMY9Ii525nTOSzVMMPHruLN3HUNqMfAq8iPgWA9_EZT_jnyv-I9KzPXzh5YLimuPucMV3GN2Iy5Qylc6GgU9FPbmXpYn7SJwsYYWW8shxxgVD5oQpPpHD43x5kX5k77ydE56_1jP2a3tzt_lW3f78-n1zfVvZuhO58qLzwzAo7e9tj160TS281dpJDdBa3-hBgXfat8qpppWI2KLrNTZ9Mzit6jN2edq7p_j4hCmbh3JJKJFGSgF93fV9XVT1SeUopkTozZ6mxdLBCDBHCuZEwRwpmELBFArF9enkKk9JbsLg8DnSPPwXAaIzJUT1UP8DsrSPqg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2210938993</pqid></control><display><type>article</type><title>The hydrothermal alteration of carbonatite in the Fen Complex, Norway; mineralogy, geochemistry, and implications for rare-earth element resource formation</title><source>Cambridge Journals</source><creator>Marien, Christian ; Dijkstra, A. H ; Wilkins, C</creator><creatorcontrib>Marien, Christian ; Dijkstra, A. H ; Wilkins, C</creatorcontrib><description>The Fen Complex in Norway consists of a ∼583 Ma composite carbonatite-ijolite-pyroxenite diatreme intrusion. Locally, high grades (up to 1.6 wt.% total REE) of rare-earth elements (REE) are found in a hydrothermally altered, hematite-rich carbonatite known as rodbergite. The progressive transformation of primary igneous carbonatite to rodbergite was studied here using scanning electron microscopy and inductively coupled plasma-mass spectrometry trace-element analysis of 23 bulk samples taken along a key geological transect. A primary mineral assemblage of calcite, dolomite, apatite, pyrite, magnetite and columbite with accessory quartz, baryte, pyrochlore, fluorite and REE fluorocarbonates was found to have transformed progressively into a secondary assemblage of dolomite, Fe-dolomite, baryte, Ba-bearing phlogopite, hematite with accessory apatite, calcite, monazite-(Ce) and quartz. Textural evidence is presented for REE fluorocarbonates and apatite breaking down in igneous carbonatite, and monazite-(Ce) precipitating in rodbergite. The importance of micro-veins, interpreted as feeder fractures, containing secondary monazite and allanite, is highlighted. Textural evidence for included relics of primary apatite-rich carbonatite are also presented. These acted as a trap for monazite-(Ce) precipitation, a mechanism predicted by physical-chemical experiments. The transformation of carbonatite to rodbergite is accompanied by a 10-fold increase in REE concentrations. The highest light REE (LREE) concentrations are found in transitional vein-rich rodbergite, whereas the highest heavy REE (HREE) and Th concentrations are found within the rodbergites, suggesting partial decoupling of LREE and HREE due to the lower stability of HREE complexes in the aqueous hydrothermal fluid. The hydrothermal fluid involved in the formation of rodbergite was oxidizing and had probably interacted with country-rock gneisses. An ore deposit model for the REE-rich rodbergites is presented here which will better inform exploration strategies in the complex, and has implications for carbonatite-hosted REE resources around the world.</description><identifier>ISSN: 0026-461X</identifier><identifier>EISSN: 1471-8022</identifier><identifier>DOI: 10.1180/minmag.2017.081.070</identifier><language>eng</language><publisher>London: Mineralogical Society</publisher><subject>accessory minerals ; actinides ; allanite ; apatite ; Calcite ; carbonates ; carbonatites ; cerium ; columbite ; country rocks ; Dolomite ; Economic geology ; electron microscopy data ; epidote group ; Europe ; Fen Complex ; Fluids ; Geochemistry ; gneisses ; hydrothermal alteration ; ICP mass spectra ; igneous rocks ; ijolite ; magnetite ; mass spectra ; Mass spectrometry ; metal ores ; metals ; metamorphic rocks ; metasomatism ; mineral assemblages ; Mineralization ; Mineralogy ; Minerals ; mobility ; monazite ; niobates ; Norway ; orthosilicates ; Oslo Rift ; oxides ; phosphates ; plutonic rocks ; Pyrite ; pyroxenite ; Quartz ; rare earth deposits ; rare earths ; rock, sediment, soil ; rodbergite ; Scandinavia ; Scanning electron microscopy ; SEM data ; silicates ; sorosilicates ; spectra ; sulfides ; Telemark Norway ; thorium ; Trace elements ; ultramafics ; Veins (geology) ; Western Europe</subject><ispartof>Mineralogical magazine, 2018-05, Vol.82 (S1), p.S115-S131</ispartof><rights>GeoRef, Copyright 2020, American Geosciences Institute. Reference includes data from GeoScienceWorld @Alexandria, VA @USA @United States. Abstract, Copyright, Mineralogical Society of Great Britain and Ireland</rights><rights>2018 This article is published under (https://creativecommons.org/licenses/by/3.0/) (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a381t-f18fddd45fba9ef17631fa55c25007af65d40fc5f74c4672eee7ec95e696dc543</citedby><cites>FETCH-LOGICAL-a381t-f18fddd45fba9ef17631fa55c25007af65d40fc5f74c4672eee7ec95e696dc543</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Marien, Christian</creatorcontrib><creatorcontrib>Dijkstra, A. H</creatorcontrib><creatorcontrib>Wilkins, C</creatorcontrib><title>The hydrothermal alteration of carbonatite in the Fen Complex, Norway; mineralogy, geochemistry, and implications for rare-earth element resource formation</title><title>Mineralogical magazine</title><description>The Fen Complex in Norway consists of a ∼583 Ma composite carbonatite-ijolite-pyroxenite diatreme intrusion. Locally, high grades (up to 1.6 wt.% total REE) of rare-earth elements (REE) are found in a hydrothermally altered, hematite-rich carbonatite known as rodbergite. The progressive transformation of primary igneous carbonatite to rodbergite was studied here using scanning electron microscopy and inductively coupled plasma-mass spectrometry trace-element analysis of 23 bulk samples taken along a key geological transect. A primary mineral assemblage of calcite, dolomite, apatite, pyrite, magnetite and columbite with accessory quartz, baryte, pyrochlore, fluorite and REE fluorocarbonates was found to have transformed progressively into a secondary assemblage of dolomite, Fe-dolomite, baryte, Ba-bearing phlogopite, hematite with accessory apatite, calcite, monazite-(Ce) and quartz. Textural evidence is presented for REE fluorocarbonates and apatite breaking down in igneous carbonatite, and monazite-(Ce) precipitating in rodbergite. The importance of micro-veins, interpreted as feeder fractures, containing secondary monazite and allanite, is highlighted. Textural evidence for included relics of primary apatite-rich carbonatite are also presented. These acted as a trap for monazite-(Ce) precipitation, a mechanism predicted by physical-chemical experiments. The transformation of carbonatite to rodbergite is accompanied by a 10-fold increase in REE concentrations. The highest light REE (LREE) concentrations are found in transitional vein-rich rodbergite, whereas the highest heavy REE (HREE) and Th concentrations are found within the rodbergites, suggesting partial decoupling of LREE and HREE due to the lower stability of HREE complexes in the aqueous hydrothermal fluid. The hydrothermal fluid involved in the formation of rodbergite was oxidizing and had probably interacted with country-rock gneisses. An ore deposit model for the REE-rich rodbergites is presented here which will better inform exploration strategies in the complex, and has implications for carbonatite-hosted REE resources around the world.</description><subject>accessory minerals</subject><subject>actinides</subject><subject>allanite</subject><subject>apatite</subject><subject>Calcite</subject><subject>carbonates</subject><subject>carbonatites</subject><subject>cerium</subject><subject>columbite</subject><subject>country rocks</subject><subject>Dolomite</subject><subject>Economic geology</subject><subject>electron microscopy data</subject><subject>epidote group</subject><subject>Europe</subject><subject>Fen Complex</subject><subject>Fluids</subject><subject>Geochemistry</subject><subject>gneisses</subject><subject>hydrothermal alteration</subject><subject>ICP mass spectra</subject><subject>igneous rocks</subject><subject>ijolite</subject><subject>magnetite</subject><subject>mass spectra</subject><subject>Mass spectrometry</subject><subject>metal ores</subject><subject>metals</subject><subject>metamorphic rocks</subject><subject>metasomatism</subject><subject>mineral assemblages</subject><subject>Mineralization</subject><subject>Mineralogy</subject><subject>Minerals</subject><subject>mobility</subject><subject>monazite</subject><subject>niobates</subject><subject>Norway</subject><subject>orthosilicates</subject><subject>Oslo Rift</subject><subject>oxides</subject><subject>phosphates</subject><subject>plutonic rocks</subject><subject>Pyrite</subject><subject>pyroxenite</subject><subject>Quartz</subject><subject>rare earth deposits</subject><subject>rare earths</subject><subject>rock, sediment, soil</subject><subject>rodbergite</subject><subject>Scandinavia</subject><subject>Scanning electron microscopy</subject><subject>SEM data</subject><subject>silicates</subject><subject>sorosilicates</subject><subject>spectra</subject><subject>sulfides</subject><subject>Telemark Norway</subject><subject>thorium</subject><subject>Trace elements</subject><subject>ultramafics</subject><subject>Veins (geology)</subject><subject>Western Europe</subject><issn>0026-461X</issn><issn>1471-8022</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpNkc9uFDEMxiMEEkvpE_QSqUc6i5NJ5o84VasuIFVwKRK3KM04O1PNJFsnVdln4WXJdnvgZFn-Pn-Wf4xdCFgL0cHnZQqL3a0liHYNnVhDC2_YSqhWVB1I-ZatAGRTqUb8fs8-pPQAIJTQcsX-3o3Ix8NAMY9Ii525nTOSzVMMPHruLN3HUNqMfAq8iPgWA9_EZT_jnyv-I9KzPXzh5YLimuPucMV3GN2Iy5Qylc6GgU9FPbmXpYn7SJwsYYWW8shxxgVD5oQpPpHD43x5kX5k77ydE56_1jP2a3tzt_lW3f78-n1zfVvZuhO58qLzwzAo7e9tj160TS281dpJDdBa3-hBgXfat8qpppWI2KLrNTZ9Mzit6jN2edq7p_j4hCmbh3JJKJFGSgF93fV9XVT1SeUopkTozZ6mxdLBCDBHCuZEwRwpmELBFArF9enkKk9JbsLg8DnSPPwXAaIzJUT1UP8DsrSPqg</recordid><startdate>201805</startdate><enddate>201805</enddate><creator>Marien, Christian</creator><creator>Dijkstra, A. H</creator><creator>Wilkins, C</creator><general>Mineralogical Society</general><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RQ</scope><scope>7XB</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>U9A</scope></search><sort><creationdate>201805</creationdate><title>The hydrothermal alteration of carbonatite in the Fen Complex, Norway; mineralogy, geochemistry, and implications for rare-earth element resource formation</title><author>Marien, Christian ; Dijkstra, A. H ; Wilkins, C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a381t-f18fddd45fba9ef17631fa55c25007af65d40fc5f74c4672eee7ec95e696dc543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>accessory minerals</topic><topic>actinides</topic><topic>allanite</topic><topic>apatite</topic><topic>Calcite</topic><topic>carbonates</topic><topic>carbonatites</topic><topic>cerium</topic><topic>columbite</topic><topic>country rocks</topic><topic>Dolomite</topic><topic>Economic geology</topic><topic>electron microscopy data</topic><topic>epidote group</topic><topic>Europe</topic><topic>Fen Complex</topic><topic>Fluids</topic><topic>Geochemistry</topic><topic>gneisses</topic><topic>hydrothermal alteration</topic><topic>ICP mass spectra</topic><topic>igneous rocks</topic><topic>ijolite</topic><topic>magnetite</topic><topic>mass spectra</topic><topic>Mass spectrometry</topic><topic>metal ores</topic><topic>metals</topic><topic>metamorphic rocks</topic><topic>metasomatism</topic><topic>mineral assemblages</topic><topic>Mineralization</topic><topic>Mineralogy</topic><topic>Minerals</topic><topic>mobility</topic><topic>monazite</topic><topic>niobates</topic><topic>Norway</topic><topic>orthosilicates</topic><topic>Oslo Rift</topic><topic>oxides</topic><topic>phosphates</topic><topic>plutonic rocks</topic><topic>Pyrite</topic><topic>pyroxenite</topic><topic>Quartz</topic><topic>rare earth deposits</topic><topic>rare earths</topic><topic>rock, sediment, soil</topic><topic>rodbergite</topic><topic>Scandinavia</topic><topic>Scanning electron microscopy</topic><topic>SEM data</topic><topic>silicates</topic><topic>sorosilicates</topic><topic>spectra</topic><topic>sulfides</topic><topic>Telemark Norway</topic><topic>thorium</topic><topic>Trace elements</topic><topic>ultramafics</topic><topic>Veins (geology)</topic><topic>Western Europe</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marien, Christian</creatorcontrib><creatorcontrib>Dijkstra, A. H</creatorcontrib><creatorcontrib>Wilkins, C</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Career & Technical Education Database</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Mineralogical magazine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marien, Christian</au><au>Dijkstra, A. H</au><au>Wilkins, C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The hydrothermal alteration of carbonatite in the Fen Complex, Norway; mineralogy, geochemistry, and implications for rare-earth element resource formation</atitle><jtitle>Mineralogical magazine</jtitle><date>2018-05</date><risdate>2018</risdate><volume>82</volume><issue>S1</issue><spage>S115</spage><epage>S131</epage><pages>S115-S131</pages><issn>0026-461X</issn><eissn>1471-8022</eissn><abstract>The Fen Complex in Norway consists of a ∼583 Ma composite carbonatite-ijolite-pyroxenite diatreme intrusion. Locally, high grades (up to 1.6 wt.% total REE) of rare-earth elements (REE) are found in a hydrothermally altered, hematite-rich carbonatite known as rodbergite. The progressive transformation of primary igneous carbonatite to rodbergite was studied here using scanning electron microscopy and inductively coupled plasma-mass spectrometry trace-element analysis of 23 bulk samples taken along a key geological transect. A primary mineral assemblage of calcite, dolomite, apatite, pyrite, magnetite and columbite with accessory quartz, baryte, pyrochlore, fluorite and REE fluorocarbonates was found to have transformed progressively into a secondary assemblage of dolomite, Fe-dolomite, baryte, Ba-bearing phlogopite, hematite with accessory apatite, calcite, monazite-(Ce) and quartz. Textural evidence is presented for REE fluorocarbonates and apatite breaking down in igneous carbonatite, and monazite-(Ce) precipitating in rodbergite. The importance of micro-veins, interpreted as feeder fractures, containing secondary monazite and allanite, is highlighted. Textural evidence for included relics of primary apatite-rich carbonatite are also presented. These acted as a trap for monazite-(Ce) precipitation, a mechanism predicted by physical-chemical experiments. The transformation of carbonatite to rodbergite is accompanied by a 10-fold increase in REE concentrations. The highest light REE (LREE) concentrations are found in transitional vein-rich rodbergite, whereas the highest heavy REE (HREE) and Th concentrations are found within the rodbergites, suggesting partial decoupling of LREE and HREE due to the lower stability of HREE complexes in the aqueous hydrothermal fluid. The hydrothermal fluid involved in the formation of rodbergite was oxidizing and had probably interacted with country-rock gneisses. An ore deposit model for the REE-rich rodbergites is presented here which will better inform exploration strategies in the complex, and has implications for carbonatite-hosted REE resources around the world.</abstract><cop>London</cop><pub>Mineralogical Society</pub><doi>10.1180/minmag.2017.081.070</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0026-461X |
ispartof | Mineralogical magazine, 2018-05, Vol.82 (S1), p.S115-S131 |
issn | 0026-461X 1471-8022 |
language | eng |
recordid | cdi_proquest_journals_2210938993 |
source | Cambridge Journals |
subjects | accessory minerals actinides allanite apatite Calcite carbonates carbonatites cerium columbite country rocks Dolomite Economic geology electron microscopy data epidote group Europe Fen Complex Fluids Geochemistry gneisses hydrothermal alteration ICP mass spectra igneous rocks ijolite magnetite mass spectra Mass spectrometry metal ores metals metamorphic rocks metasomatism mineral assemblages Mineralization Mineralogy Minerals mobility monazite niobates Norway orthosilicates Oslo Rift oxides phosphates plutonic rocks Pyrite pyroxenite Quartz rare earth deposits rare earths rock, sediment, soil rodbergite Scandinavia Scanning electron microscopy SEM data silicates sorosilicates spectra sulfides Telemark Norway thorium Trace elements ultramafics Veins (geology) Western Europe |
title | The hydrothermal alteration of carbonatite in the Fen Complex, Norway; mineralogy, geochemistry, and implications for rare-earth element resource formation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T06%3A38%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20hydrothermal%20alteration%20of%20carbonatite%20in%20the%20Fen%20Complex,%20Norway;%20mineralogy,%20geochemistry,%20and%20implications%20for%20rare-earth%20element%20resource%20formation&rft.jtitle=Mineralogical%20magazine&rft.au=Marien,%20Christian&rft.date=2018-05&rft.volume=82&rft.issue=S1&rft.spage=S115&rft.epage=S131&rft.pages=S115-S131&rft.issn=0026-461X&rft.eissn=1471-8022&rft_id=info:doi/10.1180/minmag.2017.081.070&rft_dat=%3Cproquest_cross%3E2210938993%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2210938993&rft_id=info:pmid/&rfr_iscdi=true |