An on-line variable-fidelity surrogate-assisted harmony search algorithm with multi-level screening strategy for expensive engineering design optimization

This paper presents an on-line variable-fidelity surrogate-assisted harmony search algorithm (VFS-HS) for expensive engineering design optimization problems. VFS-HS employs a novel model-management strategy that uses a multi-level screening mechanism based on non-dominated sorting to strictly contro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Knowledge-based systems 2019-04, Vol.170, p.1-19
Hauptverfasser: Yi, Jin, Gao, Liang, Li, Xinyu, Shoemaker, Christine A., Lu, Chao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 19
container_issue
container_start_page 1
container_title Knowledge-based systems
container_volume 170
creator Yi, Jin
Gao, Liang
Li, Xinyu
Shoemaker, Christine A.
Lu, Chao
description This paper presents an on-line variable-fidelity surrogate-assisted harmony search algorithm (VFS-HS) for expensive engineering design optimization problems. VFS-HS employs a novel model-management strategy that uses a multi-level screening mechanism based on non-dominated sorting to strictly control the numbers of low-fidelity and high-fidelity evaluations and to keep a balance between exploration and exploitation. The performance of VFS-HS is validated through comparison not only to those of four single-fidelity surrogate-assisted optimization methods (i.e. the particle swarm optimization algorithm with radial basis function-based surrogate (OPUS-RBF), the two-layer surrogate-assisted particle swarm optimization algorithm (TLSAPSO), the surrogate-assisted hierarchical particle swarm optimization (SHPSO) and the hybrid surrogate-based optimization using space reduction (HSOSR)) but also to that a multi-fidelity surrogate-assisted optimization method (the multi-fidelity Gaussian process and radial basis function-model-assisted memetic differential evolution (MGPMDE)) on the CEC2014 expensive optimization test suite. A real-world problem of the optimal design for a long cylindrical gas-pressure vessel is also investigated. The results show that VFS-HS outperforms all the compared methods.
doi_str_mv 10.1016/j.knosys.2019.01.004
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2210875149</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0950705119300048</els_id><sourcerecordid>2210875149</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-849afa7fa6edbd8ea77465d7f2321fdabfe525bb0440986f25fa0ee241fe33603</originalsourceid><addsrcrecordid>eNp9UcuO1DAQtBBIDAt_wMES54S247wuSKsVL2klLnC2nLid6SGxB9szMHwKX4tHw5lL96GrqrurGHstoBYgureH-rsP6ZJqCWKsQdQA6gnbiaGXVa9gfMp2MLZQ9dCK5-xFSgcAkFIMO_bn3vPgq5U88rOJZKYVK0cWV8oXnk4xhsVkrExKlDJavjdxC76M0MR5z826hEh5v_GfpfLttGaqVjzjytMcET35hacci8Zy4S5Ejr-O6BOdkaNfylqMV4jFREs55Zhpo98mU_Av2TNn1oSv_vU79u3D-68Pn6rHLx8_P9w_VnPTqFwNajTO9M50aCc7oOl71bW2d7KRwlkzOWxlO02gihND52TrDCBKJRw2TQfNHXtz0z3G8OOEKetDOEVfVuriEQx9K9RYUOqGmmNIKaLTx0ibiRctQF9T0Ad9S0FfU9AgdEmh0N7daFg-OBNGnWZCP6OliHPWNtD_Bf4CkRSYdQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2210875149</pqid></control><display><type>article</type><title>An on-line variable-fidelity surrogate-assisted harmony search algorithm with multi-level screening strategy for expensive engineering design optimization</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Yi, Jin ; Gao, Liang ; Li, Xinyu ; Shoemaker, Christine A. ; Lu, Chao</creator><creatorcontrib>Yi, Jin ; Gao, Liang ; Li, Xinyu ; Shoemaker, Christine A. ; Lu, Chao</creatorcontrib><description>This paper presents an on-line variable-fidelity surrogate-assisted harmony search algorithm (VFS-HS) for expensive engineering design optimization problems. VFS-HS employs a novel model-management strategy that uses a multi-level screening mechanism based on non-dominated sorting to strictly control the numbers of low-fidelity and high-fidelity evaluations and to keep a balance between exploration and exploitation. The performance of VFS-HS is validated through comparison not only to those of four single-fidelity surrogate-assisted optimization methods (i.e. the particle swarm optimization algorithm with radial basis function-based surrogate (OPUS-RBF), the two-layer surrogate-assisted particle swarm optimization algorithm (TLSAPSO), the surrogate-assisted hierarchical particle swarm optimization (SHPSO) and the hybrid surrogate-based optimization using space reduction (HSOSR)) but also to that a multi-fidelity surrogate-assisted optimization method (the multi-fidelity Gaussian process and radial basis function-model-assisted memetic differential evolution (MGPMDE)) on the CEC2014 expensive optimization test suite. A real-world problem of the optimal design for a long cylindrical gas-pressure vessel is also investigated. The results show that VFS-HS outperforms all the compared methods.</description><identifier>ISSN: 0950-7051</identifier><identifier>EISSN: 1872-7409</identifier><identifier>DOI: 10.1016/j.knosys.2019.01.004</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Basis functions ; Design engineering ; Design optimization ; Evolutionary computation ; Expensive engineering design optimization ; Gaussian process ; Harmony search algorithm ; Non-dominated sorting ; Optimization algorithms ; Particle swarm optimization ; Pressure vessels ; Radial basis function ; Screening ; Search algorithms ; Variable-fidelity surrogate</subject><ispartof>Knowledge-based systems, 2019-04, Vol.170, p.1-19</ispartof><rights>2019 Elsevier B.V.</rights><rights>Copyright Elsevier Science Ltd. Apr 15, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-849afa7fa6edbd8ea77465d7f2321fdabfe525bb0440986f25fa0ee241fe33603</citedby><cites>FETCH-LOGICAL-c334t-849afa7fa6edbd8ea77465d7f2321fdabfe525bb0440986f25fa0ee241fe33603</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.knosys.2019.01.004$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Yi, Jin</creatorcontrib><creatorcontrib>Gao, Liang</creatorcontrib><creatorcontrib>Li, Xinyu</creatorcontrib><creatorcontrib>Shoemaker, Christine A.</creatorcontrib><creatorcontrib>Lu, Chao</creatorcontrib><title>An on-line variable-fidelity surrogate-assisted harmony search algorithm with multi-level screening strategy for expensive engineering design optimization</title><title>Knowledge-based systems</title><description>This paper presents an on-line variable-fidelity surrogate-assisted harmony search algorithm (VFS-HS) for expensive engineering design optimization problems. VFS-HS employs a novel model-management strategy that uses a multi-level screening mechanism based on non-dominated sorting to strictly control the numbers of low-fidelity and high-fidelity evaluations and to keep a balance between exploration and exploitation. The performance of VFS-HS is validated through comparison not only to those of four single-fidelity surrogate-assisted optimization methods (i.e. the particle swarm optimization algorithm with radial basis function-based surrogate (OPUS-RBF), the two-layer surrogate-assisted particle swarm optimization algorithm (TLSAPSO), the surrogate-assisted hierarchical particle swarm optimization (SHPSO) and the hybrid surrogate-based optimization using space reduction (HSOSR)) but also to that a multi-fidelity surrogate-assisted optimization method (the multi-fidelity Gaussian process and radial basis function-model-assisted memetic differential evolution (MGPMDE)) on the CEC2014 expensive optimization test suite. A real-world problem of the optimal design for a long cylindrical gas-pressure vessel is also investigated. The results show that VFS-HS outperforms all the compared methods.</description><subject>Basis functions</subject><subject>Design engineering</subject><subject>Design optimization</subject><subject>Evolutionary computation</subject><subject>Expensive engineering design optimization</subject><subject>Gaussian process</subject><subject>Harmony search algorithm</subject><subject>Non-dominated sorting</subject><subject>Optimization algorithms</subject><subject>Particle swarm optimization</subject><subject>Pressure vessels</subject><subject>Radial basis function</subject><subject>Screening</subject><subject>Search algorithms</subject><subject>Variable-fidelity surrogate</subject><issn>0950-7051</issn><issn>1872-7409</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9UcuO1DAQtBBIDAt_wMES54S247wuSKsVL2klLnC2nLid6SGxB9szMHwKX4tHw5lL96GrqrurGHstoBYgureH-rsP6ZJqCWKsQdQA6gnbiaGXVa9gfMp2MLZQ9dCK5-xFSgcAkFIMO_bn3vPgq5U88rOJZKYVK0cWV8oXnk4xhsVkrExKlDJavjdxC76M0MR5z826hEh5v_GfpfLttGaqVjzjytMcET35hacci8Zy4S5Ejr-O6BOdkaNfylqMV4jFREs55Zhpo98mU_Av2TNn1oSv_vU79u3D-68Pn6rHLx8_P9w_VnPTqFwNajTO9M50aCc7oOl71bW2d7KRwlkzOWxlO02gihND52TrDCBKJRw2TQfNHXtz0z3G8OOEKetDOEVfVuriEQx9K9RYUOqGmmNIKaLTx0ibiRctQF9T0Ad9S0FfU9AgdEmh0N7daFg-OBNGnWZCP6OliHPWNtD_Bf4CkRSYdQ</recordid><startdate>20190415</startdate><enddate>20190415</enddate><creator>Yi, Jin</creator><creator>Gao, Liang</creator><creator>Li, Xinyu</creator><creator>Shoemaker, Christine A.</creator><creator>Lu, Chao</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>E3H</scope><scope>F2A</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20190415</creationdate><title>An on-line variable-fidelity surrogate-assisted harmony search algorithm with multi-level screening strategy for expensive engineering design optimization</title><author>Yi, Jin ; Gao, Liang ; Li, Xinyu ; Shoemaker, Christine A. ; Lu, Chao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-849afa7fa6edbd8ea77465d7f2321fdabfe525bb0440986f25fa0ee241fe33603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Basis functions</topic><topic>Design engineering</topic><topic>Design optimization</topic><topic>Evolutionary computation</topic><topic>Expensive engineering design optimization</topic><topic>Gaussian process</topic><topic>Harmony search algorithm</topic><topic>Non-dominated sorting</topic><topic>Optimization algorithms</topic><topic>Particle swarm optimization</topic><topic>Pressure vessels</topic><topic>Radial basis function</topic><topic>Screening</topic><topic>Search algorithms</topic><topic>Variable-fidelity surrogate</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yi, Jin</creatorcontrib><creatorcontrib>Gao, Liang</creatorcontrib><creatorcontrib>Li, Xinyu</creatorcontrib><creatorcontrib>Shoemaker, Christine A.</creatorcontrib><creatorcontrib>Lu, Chao</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Library &amp; Information Sciences Abstracts (LISA)</collection><collection>Library &amp; Information Science Abstracts (LISA)</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Knowledge-based systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yi, Jin</au><au>Gao, Liang</au><au>Li, Xinyu</au><au>Shoemaker, Christine A.</au><au>Lu, Chao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An on-line variable-fidelity surrogate-assisted harmony search algorithm with multi-level screening strategy for expensive engineering design optimization</atitle><jtitle>Knowledge-based systems</jtitle><date>2019-04-15</date><risdate>2019</risdate><volume>170</volume><spage>1</spage><epage>19</epage><pages>1-19</pages><issn>0950-7051</issn><eissn>1872-7409</eissn><abstract>This paper presents an on-line variable-fidelity surrogate-assisted harmony search algorithm (VFS-HS) for expensive engineering design optimization problems. VFS-HS employs a novel model-management strategy that uses a multi-level screening mechanism based on non-dominated sorting to strictly control the numbers of low-fidelity and high-fidelity evaluations and to keep a balance between exploration and exploitation. The performance of VFS-HS is validated through comparison not only to those of four single-fidelity surrogate-assisted optimization methods (i.e. the particle swarm optimization algorithm with radial basis function-based surrogate (OPUS-RBF), the two-layer surrogate-assisted particle swarm optimization algorithm (TLSAPSO), the surrogate-assisted hierarchical particle swarm optimization (SHPSO) and the hybrid surrogate-based optimization using space reduction (HSOSR)) but also to that a multi-fidelity surrogate-assisted optimization method (the multi-fidelity Gaussian process and radial basis function-model-assisted memetic differential evolution (MGPMDE)) on the CEC2014 expensive optimization test suite. A real-world problem of the optimal design for a long cylindrical gas-pressure vessel is also investigated. The results show that VFS-HS outperforms all the compared methods.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.knosys.2019.01.004</doi><tpages>19</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0950-7051
ispartof Knowledge-based systems, 2019-04, Vol.170, p.1-19
issn 0950-7051
1872-7409
language eng
recordid cdi_proquest_journals_2210875149
source Elsevier ScienceDirect Journals Complete
subjects Basis functions
Design engineering
Design optimization
Evolutionary computation
Expensive engineering design optimization
Gaussian process
Harmony search algorithm
Non-dominated sorting
Optimization algorithms
Particle swarm optimization
Pressure vessels
Radial basis function
Screening
Search algorithms
Variable-fidelity surrogate
title An on-line variable-fidelity surrogate-assisted harmony search algorithm with multi-level screening strategy for expensive engineering design optimization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T15%3A41%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20on-line%20variable-fidelity%20surrogate-assisted%20harmony%20search%20algorithm%20with%20multi-level%20screening%20strategy%20for%20expensive%20engineering%20design%20optimization&rft.jtitle=Knowledge-based%20systems&rft.au=Yi,%20Jin&rft.date=2019-04-15&rft.volume=170&rft.spage=1&rft.epage=19&rft.pages=1-19&rft.issn=0950-7051&rft.eissn=1872-7409&rft_id=info:doi/10.1016/j.knosys.2019.01.004&rft_dat=%3Cproquest_cross%3E2210875149%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2210875149&rft_id=info:pmid/&rft_els_id=S0950705119300048&rfr_iscdi=true