Non-convex and non-smooth variational decomposition for image restoration

•A non-convex and non-smooth variational decomposition is proposed.•An iteratively reweighted l1 (IRL1) algorithm combining with ADMM is introduced to solve the proposed model.•The proposed model is applied for image denoising and deblurring. The variational image decomposition model decomposes an i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied Mathematical Modelling 2019-05, Vol.69, p.355-377
Hauptverfasser: Liming, Tang, Honglu, Zhang, Chuanjiang, He, Zhuang, Fang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 377
container_issue
container_start_page 355
container_title Applied Mathematical Modelling
container_volume 69
creator Liming, Tang
Honglu, Zhang
Chuanjiang, He
Zhuang, Fang
description •A non-convex and non-smooth variational decomposition is proposed.•An iteratively reweighted l1 (IRL1) algorithm combining with ADMM is introduced to solve the proposed model.•The proposed model is applied for image denoising and deblurring. The variational image decomposition model decomposes an image into a structural and an oscillatory component by regularization technique and functional minimization. It is an important task in various image processing methods, such as image restoration, image segmentation, and object recognition. In this paper, we propose a non-convex and non-smooth variational decomposition model for image restoration that uses non-convex and non-smooth total variation (TV) to measure the structure component and the negative Sobolev space H−1 to model the oscillatory component. The new model combines the advantages of non-convex regularization and weaker-norm texture modeling, and it can well remove the noises while preserving the valuable edges and contours of the image. The iteratively reweighted l1 (IRL1) algorithm is employed to solve the proposed non-convex minimization problem. For each subproblem, we use the alternating direction method of multipliers (ADMM) algorithm to solve it. Numerical results validate the effectiveness of the proposed model for both synthetic and real images in terms of peak signal-to-noise ratio (PSNR) and mean structural similarity index (MSSIM).
doi_str_mv 10.1016/j.apm.2018.12.021
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2210871943</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0307904X18306310</els_id><sourcerecordid>2210871943</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-ff43a928150ed700a64259bb8d763c2b30236cce860938729119a133e27e57b83</originalsourceid><addsrcrecordid>eNp9kM1LxDAQxYMouK7-Ad4Knltnkn6keJLFjwXRi4K3kKZTTdk2a9Jd9L8363rw5GnmwXszjx9j5wgZApaXfabXQ8YBZYY8A44HbAYCqrSG_PXwz37MTkLoAaCIasaWj25MjRu39JnosU3GKMPg3PSebLW3erJu1KukJeOGtQt2p5PO-cQO-o0ST2Fy_sd1yo46vQp09jvn7OX25nlxnz483S0X1w-pEaWc0q7Lha65xAKorQB0mfOibhrZVqUwvBHARWkMyRJqISteI9YahSBeUVE1UszZxf7u2ruPTfyverfxsWRQnCPICutcRBfuXca7EDx1au1jZf-lENSOmOpVJKZ2xBRyFYnFzNU-Q7H-1pJXwVgaDbXWk5lU6-w_6W_IaHMa</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2210871943</pqid></control><display><type>article</type><title>Non-convex and non-smooth variational decomposition for image restoration</title><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Business Source Complete</source><source>Education Source</source><creator>Liming, Tang ; Honglu, Zhang ; Chuanjiang, He ; Zhuang, Fang</creator><creatorcontrib>Liming, Tang ; Honglu, Zhang ; Chuanjiang, He ; Zhuang, Fang</creatorcontrib><description>•A non-convex and non-smooth variational decomposition is proposed.•An iteratively reweighted l1 (IRL1) algorithm combining with ADMM is introduced to solve the proposed model.•The proposed model is applied for image denoising and deblurring. The variational image decomposition model decomposes an image into a structural and an oscillatory component by regularization technique and functional minimization. It is an important task in various image processing methods, such as image restoration, image segmentation, and object recognition. In this paper, we propose a non-convex and non-smooth variational decomposition model for image restoration that uses non-convex and non-smooth total variation (TV) to measure the structure component and the negative Sobolev space H−1 to model the oscillatory component. The new model combines the advantages of non-convex regularization and weaker-norm texture modeling, and it can well remove the noises while preserving the valuable edges and contours of the image. The iteratively reweighted l1 (IRL1) algorithm is employed to solve the proposed non-convex minimization problem. For each subproblem, we use the alternating direction method of multipliers (ADMM) algorithm to solve it. Numerical results validate the effectiveness of the proposed model for both synthetic and real images in terms of peak signal-to-noise ratio (PSNR) and mean structural similarity index (MSSIM).</description><identifier>ISSN: 0307-904X</identifier><identifier>ISSN: 1088-8691</identifier><identifier>EISSN: 0307-904X</identifier><identifier>DOI: 10.1016/j.apm.2018.12.021</identifier><language>eng</language><publisher>New York: Elsevier Inc</publisher><subject>ADMM algorithm ; Algorithms ; Decomposition ; Image processing ; Image restoration ; Image segmentation ; IRL1 algorithm ; Mathematical models ; Non-convex ; Non-smooth ; Object recognition ; Optimization ; Regularization ; Sobolev space ; Variational decomposition</subject><ispartof>Applied Mathematical Modelling, 2019-05, Vol.69, p.355-377</ispartof><rights>2018 Elsevier Inc.</rights><rights>Copyright Elsevier BV May 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-ff43a928150ed700a64259bb8d763c2b30236cce860938729119a133e27e57b83</citedby><cites>FETCH-LOGICAL-c368t-ff43a928150ed700a64259bb8d763c2b30236cce860938729119a133e27e57b83</cites><orcidid>0000-0001-9140-4745</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.apm.2018.12.021$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids></links><search><creatorcontrib>Liming, Tang</creatorcontrib><creatorcontrib>Honglu, Zhang</creatorcontrib><creatorcontrib>Chuanjiang, He</creatorcontrib><creatorcontrib>Zhuang, Fang</creatorcontrib><title>Non-convex and non-smooth variational decomposition for image restoration</title><title>Applied Mathematical Modelling</title><description>•A non-convex and non-smooth variational decomposition is proposed.•An iteratively reweighted l1 (IRL1) algorithm combining with ADMM is introduced to solve the proposed model.•The proposed model is applied for image denoising and deblurring. The variational image decomposition model decomposes an image into a structural and an oscillatory component by regularization technique and functional minimization. It is an important task in various image processing methods, such as image restoration, image segmentation, and object recognition. In this paper, we propose a non-convex and non-smooth variational decomposition model for image restoration that uses non-convex and non-smooth total variation (TV) to measure the structure component and the negative Sobolev space H−1 to model the oscillatory component. The new model combines the advantages of non-convex regularization and weaker-norm texture modeling, and it can well remove the noises while preserving the valuable edges and contours of the image. The iteratively reweighted l1 (IRL1) algorithm is employed to solve the proposed non-convex minimization problem. For each subproblem, we use the alternating direction method of multipliers (ADMM) algorithm to solve it. Numerical results validate the effectiveness of the proposed model for both synthetic and real images in terms of peak signal-to-noise ratio (PSNR) and mean structural similarity index (MSSIM).</description><subject>ADMM algorithm</subject><subject>Algorithms</subject><subject>Decomposition</subject><subject>Image processing</subject><subject>Image restoration</subject><subject>Image segmentation</subject><subject>IRL1 algorithm</subject><subject>Mathematical models</subject><subject>Non-convex</subject><subject>Non-smooth</subject><subject>Object recognition</subject><subject>Optimization</subject><subject>Regularization</subject><subject>Sobolev space</subject><subject>Variational decomposition</subject><issn>0307-904X</issn><issn>1088-8691</issn><issn>0307-904X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kM1LxDAQxYMouK7-Ad4Knltnkn6keJLFjwXRi4K3kKZTTdk2a9Jd9L8363rw5GnmwXszjx9j5wgZApaXfabXQ8YBZYY8A44HbAYCqrSG_PXwz37MTkLoAaCIasaWj25MjRu39JnosU3GKMPg3PSebLW3erJu1KukJeOGtQt2p5PO-cQO-o0ST2Fy_sd1yo46vQp09jvn7OX25nlxnz483S0X1w-pEaWc0q7Lha65xAKorQB0mfOibhrZVqUwvBHARWkMyRJqISteI9YahSBeUVE1UszZxf7u2ruPTfyverfxsWRQnCPICutcRBfuXca7EDx1au1jZf-lENSOmOpVJKZ2xBRyFYnFzNU-Q7H-1pJXwVgaDbXWk5lU6-w_6W_IaHMa</recordid><startdate>201905</startdate><enddate>201905</enddate><creator>Liming, Tang</creator><creator>Honglu, Zhang</creator><creator>Chuanjiang, He</creator><creator>Zhuang, Fang</creator><general>Elsevier Inc</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-9140-4745</orcidid></search><sort><creationdate>201905</creationdate><title>Non-convex and non-smooth variational decomposition for image restoration</title><author>Liming, Tang ; Honglu, Zhang ; Chuanjiang, He ; Zhuang, Fang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-ff43a928150ed700a64259bb8d763c2b30236cce860938729119a133e27e57b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>ADMM algorithm</topic><topic>Algorithms</topic><topic>Decomposition</topic><topic>Image processing</topic><topic>Image restoration</topic><topic>Image segmentation</topic><topic>IRL1 algorithm</topic><topic>Mathematical models</topic><topic>Non-convex</topic><topic>Non-smooth</topic><topic>Object recognition</topic><topic>Optimization</topic><topic>Regularization</topic><topic>Sobolev space</topic><topic>Variational decomposition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liming, Tang</creatorcontrib><creatorcontrib>Honglu, Zhang</creatorcontrib><creatorcontrib>Chuanjiang, He</creatorcontrib><creatorcontrib>Zhuang, Fang</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Applied Mathematical Modelling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liming, Tang</au><au>Honglu, Zhang</au><au>Chuanjiang, He</au><au>Zhuang, Fang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non-convex and non-smooth variational decomposition for image restoration</atitle><jtitle>Applied Mathematical Modelling</jtitle><date>2019-05</date><risdate>2019</risdate><volume>69</volume><spage>355</spage><epage>377</epage><pages>355-377</pages><issn>0307-904X</issn><issn>1088-8691</issn><eissn>0307-904X</eissn><abstract>•A non-convex and non-smooth variational decomposition is proposed.•An iteratively reweighted l1 (IRL1) algorithm combining with ADMM is introduced to solve the proposed model.•The proposed model is applied for image denoising and deblurring. The variational image decomposition model decomposes an image into a structural and an oscillatory component by regularization technique and functional minimization. It is an important task in various image processing methods, such as image restoration, image segmentation, and object recognition. In this paper, we propose a non-convex and non-smooth variational decomposition model for image restoration that uses non-convex and non-smooth total variation (TV) to measure the structure component and the negative Sobolev space H−1 to model the oscillatory component. The new model combines the advantages of non-convex regularization and weaker-norm texture modeling, and it can well remove the noises while preserving the valuable edges and contours of the image. The iteratively reweighted l1 (IRL1) algorithm is employed to solve the proposed non-convex minimization problem. For each subproblem, we use the alternating direction method of multipliers (ADMM) algorithm to solve it. Numerical results validate the effectiveness of the proposed model for both synthetic and real images in terms of peak signal-to-noise ratio (PSNR) and mean structural similarity index (MSSIM).</abstract><cop>New York</cop><pub>Elsevier Inc</pub><doi>10.1016/j.apm.2018.12.021</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0001-9140-4745</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0307-904X
ispartof Applied Mathematical Modelling, 2019-05, Vol.69, p.355-377
issn 0307-904X
1088-8691
0307-904X
language eng
recordid cdi_proquest_journals_2210871943
source Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Business Source Complete; Education Source
subjects ADMM algorithm
Algorithms
Decomposition
Image processing
Image restoration
Image segmentation
IRL1 algorithm
Mathematical models
Non-convex
Non-smooth
Object recognition
Optimization
Regularization
Sobolev space
Variational decomposition
title Non-convex and non-smooth variational decomposition for image restoration
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T14%3A44%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non-convex%20and%20non-smooth%20variational%20decomposition%20for%20image%20restoration&rft.jtitle=Applied%20Mathematical%20Modelling&rft.au=Liming,%20Tang&rft.date=2019-05&rft.volume=69&rft.spage=355&rft.epage=377&rft.pages=355-377&rft.issn=0307-904X&rft.eissn=0307-904X&rft_id=info:doi/10.1016/j.apm.2018.12.021&rft_dat=%3Cproquest_cross%3E2210871943%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2210871943&rft_id=info:pmid/&rft_els_id=S0307904X18306310&rfr_iscdi=true