Non-convex and non-smooth variational decomposition for image restoration
•A non-convex and non-smooth variational decomposition is proposed.•An iteratively reweighted l1 (IRL1) algorithm combining with ADMM is introduced to solve the proposed model.•The proposed model is applied for image denoising and deblurring. The variational image decomposition model decomposes an i...
Gespeichert in:
Veröffentlicht in: | Applied Mathematical Modelling 2019-05, Vol.69, p.355-377 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 377 |
---|---|
container_issue | |
container_start_page | 355 |
container_title | Applied Mathematical Modelling |
container_volume | 69 |
creator | Liming, Tang Honglu, Zhang Chuanjiang, He Zhuang, Fang |
description | •A non-convex and non-smooth variational decomposition is proposed.•An iteratively reweighted l1 (IRL1) algorithm combining with ADMM is introduced to solve the proposed model.•The proposed model is applied for image denoising and deblurring.
The variational image decomposition model decomposes an image into a structural and an oscillatory component by regularization technique and functional minimization. It is an important task in various image processing methods, such as image restoration, image segmentation, and object recognition. In this paper, we propose a non-convex and non-smooth variational decomposition model for image restoration that uses non-convex and non-smooth total variation (TV) to measure the structure component and the negative Sobolev space H−1 to model the oscillatory component. The new model combines the advantages of non-convex regularization and weaker-norm texture modeling, and it can well remove the noises while preserving the valuable edges and contours of the image. The iteratively reweighted l1 (IRL1) algorithm is employed to solve the proposed non-convex minimization problem. For each subproblem, we use the alternating direction method of multipliers (ADMM) algorithm to solve it. Numerical results validate the effectiveness of the proposed model for both synthetic and real images in terms of peak signal-to-noise ratio (PSNR) and mean structural similarity index (MSSIM). |
doi_str_mv | 10.1016/j.apm.2018.12.021 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2210871943</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0307904X18306310</els_id><sourcerecordid>2210871943</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-ff43a928150ed700a64259bb8d763c2b30236cce860938729119a133e27e57b83</originalsourceid><addsrcrecordid>eNp9kM1LxDAQxYMouK7-Ad4Knltnkn6keJLFjwXRi4K3kKZTTdk2a9Jd9L8363rw5GnmwXszjx9j5wgZApaXfabXQ8YBZYY8A44HbAYCqrSG_PXwz37MTkLoAaCIasaWj25MjRu39JnosU3GKMPg3PSebLW3erJu1KukJeOGtQt2p5PO-cQO-o0ST2Fy_sd1yo46vQp09jvn7OX25nlxnz483S0X1w-pEaWc0q7Lha65xAKorQB0mfOibhrZVqUwvBHARWkMyRJqISteI9YahSBeUVE1UszZxf7u2ruPTfyverfxsWRQnCPICutcRBfuXca7EDx1au1jZf-lENSOmOpVJKZ2xBRyFYnFzNU-Q7H-1pJXwVgaDbXWk5lU6-w_6W_IaHMa</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2210871943</pqid></control><display><type>article</type><title>Non-convex and non-smooth variational decomposition for image restoration</title><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Business Source Complete</source><source>Education Source</source><creator>Liming, Tang ; Honglu, Zhang ; Chuanjiang, He ; Zhuang, Fang</creator><creatorcontrib>Liming, Tang ; Honglu, Zhang ; Chuanjiang, He ; Zhuang, Fang</creatorcontrib><description>•A non-convex and non-smooth variational decomposition is proposed.•An iteratively reweighted l1 (IRL1) algorithm combining with ADMM is introduced to solve the proposed model.•The proposed model is applied for image denoising and deblurring.
The variational image decomposition model decomposes an image into a structural and an oscillatory component by regularization technique and functional minimization. It is an important task in various image processing methods, such as image restoration, image segmentation, and object recognition. In this paper, we propose a non-convex and non-smooth variational decomposition model for image restoration that uses non-convex and non-smooth total variation (TV) to measure the structure component and the negative Sobolev space H−1 to model the oscillatory component. The new model combines the advantages of non-convex regularization and weaker-norm texture modeling, and it can well remove the noises while preserving the valuable edges and contours of the image. The iteratively reweighted l1 (IRL1) algorithm is employed to solve the proposed non-convex minimization problem. For each subproblem, we use the alternating direction method of multipliers (ADMM) algorithm to solve it. Numerical results validate the effectiveness of the proposed model for both synthetic and real images in terms of peak signal-to-noise ratio (PSNR) and mean structural similarity index (MSSIM).</description><identifier>ISSN: 0307-904X</identifier><identifier>ISSN: 1088-8691</identifier><identifier>EISSN: 0307-904X</identifier><identifier>DOI: 10.1016/j.apm.2018.12.021</identifier><language>eng</language><publisher>New York: Elsevier Inc</publisher><subject>ADMM algorithm ; Algorithms ; Decomposition ; Image processing ; Image restoration ; Image segmentation ; IRL1 algorithm ; Mathematical models ; Non-convex ; Non-smooth ; Object recognition ; Optimization ; Regularization ; Sobolev space ; Variational decomposition</subject><ispartof>Applied Mathematical Modelling, 2019-05, Vol.69, p.355-377</ispartof><rights>2018 Elsevier Inc.</rights><rights>Copyright Elsevier BV May 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-ff43a928150ed700a64259bb8d763c2b30236cce860938729119a133e27e57b83</citedby><cites>FETCH-LOGICAL-c368t-ff43a928150ed700a64259bb8d763c2b30236cce860938729119a133e27e57b83</cites><orcidid>0000-0001-9140-4745</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.apm.2018.12.021$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids></links><search><creatorcontrib>Liming, Tang</creatorcontrib><creatorcontrib>Honglu, Zhang</creatorcontrib><creatorcontrib>Chuanjiang, He</creatorcontrib><creatorcontrib>Zhuang, Fang</creatorcontrib><title>Non-convex and non-smooth variational decomposition for image restoration</title><title>Applied Mathematical Modelling</title><description>•A non-convex and non-smooth variational decomposition is proposed.•An iteratively reweighted l1 (IRL1) algorithm combining with ADMM is introduced to solve the proposed model.•The proposed model is applied for image denoising and deblurring.
The variational image decomposition model decomposes an image into a structural and an oscillatory component by regularization technique and functional minimization. It is an important task in various image processing methods, such as image restoration, image segmentation, and object recognition. In this paper, we propose a non-convex and non-smooth variational decomposition model for image restoration that uses non-convex and non-smooth total variation (TV) to measure the structure component and the negative Sobolev space H−1 to model the oscillatory component. The new model combines the advantages of non-convex regularization and weaker-norm texture modeling, and it can well remove the noises while preserving the valuable edges and contours of the image. The iteratively reweighted l1 (IRL1) algorithm is employed to solve the proposed non-convex minimization problem. For each subproblem, we use the alternating direction method of multipliers (ADMM) algorithm to solve it. Numerical results validate the effectiveness of the proposed model for both synthetic and real images in terms of peak signal-to-noise ratio (PSNR) and mean structural similarity index (MSSIM).</description><subject>ADMM algorithm</subject><subject>Algorithms</subject><subject>Decomposition</subject><subject>Image processing</subject><subject>Image restoration</subject><subject>Image segmentation</subject><subject>IRL1 algorithm</subject><subject>Mathematical models</subject><subject>Non-convex</subject><subject>Non-smooth</subject><subject>Object recognition</subject><subject>Optimization</subject><subject>Regularization</subject><subject>Sobolev space</subject><subject>Variational decomposition</subject><issn>0307-904X</issn><issn>1088-8691</issn><issn>0307-904X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kM1LxDAQxYMouK7-Ad4Knltnkn6keJLFjwXRi4K3kKZTTdk2a9Jd9L8363rw5GnmwXszjx9j5wgZApaXfabXQ8YBZYY8A44HbAYCqrSG_PXwz37MTkLoAaCIasaWj25MjRu39JnosU3GKMPg3PSebLW3erJu1KukJeOGtQt2p5PO-cQO-o0ST2Fy_sd1yo46vQp09jvn7OX25nlxnz483S0X1w-pEaWc0q7Lha65xAKorQB0mfOibhrZVqUwvBHARWkMyRJqISteI9YahSBeUVE1UszZxf7u2ruPTfyverfxsWRQnCPICutcRBfuXca7EDx1au1jZf-lENSOmOpVJKZ2xBRyFYnFzNU-Q7H-1pJXwVgaDbXWk5lU6-w_6W_IaHMa</recordid><startdate>201905</startdate><enddate>201905</enddate><creator>Liming, Tang</creator><creator>Honglu, Zhang</creator><creator>Chuanjiang, He</creator><creator>Zhuang, Fang</creator><general>Elsevier Inc</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-9140-4745</orcidid></search><sort><creationdate>201905</creationdate><title>Non-convex and non-smooth variational decomposition for image restoration</title><author>Liming, Tang ; Honglu, Zhang ; Chuanjiang, He ; Zhuang, Fang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-ff43a928150ed700a64259bb8d763c2b30236cce860938729119a133e27e57b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>ADMM algorithm</topic><topic>Algorithms</topic><topic>Decomposition</topic><topic>Image processing</topic><topic>Image restoration</topic><topic>Image segmentation</topic><topic>IRL1 algorithm</topic><topic>Mathematical models</topic><topic>Non-convex</topic><topic>Non-smooth</topic><topic>Object recognition</topic><topic>Optimization</topic><topic>Regularization</topic><topic>Sobolev space</topic><topic>Variational decomposition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liming, Tang</creatorcontrib><creatorcontrib>Honglu, Zhang</creatorcontrib><creatorcontrib>Chuanjiang, He</creatorcontrib><creatorcontrib>Zhuang, Fang</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Applied Mathematical Modelling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liming, Tang</au><au>Honglu, Zhang</au><au>Chuanjiang, He</au><au>Zhuang, Fang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non-convex and non-smooth variational decomposition for image restoration</atitle><jtitle>Applied Mathematical Modelling</jtitle><date>2019-05</date><risdate>2019</risdate><volume>69</volume><spage>355</spage><epage>377</epage><pages>355-377</pages><issn>0307-904X</issn><issn>1088-8691</issn><eissn>0307-904X</eissn><abstract>•A non-convex and non-smooth variational decomposition is proposed.•An iteratively reweighted l1 (IRL1) algorithm combining with ADMM is introduced to solve the proposed model.•The proposed model is applied for image denoising and deblurring.
The variational image decomposition model decomposes an image into a structural and an oscillatory component by regularization technique and functional minimization. It is an important task in various image processing methods, such as image restoration, image segmentation, and object recognition. In this paper, we propose a non-convex and non-smooth variational decomposition model for image restoration that uses non-convex and non-smooth total variation (TV) to measure the structure component and the negative Sobolev space H−1 to model the oscillatory component. The new model combines the advantages of non-convex regularization and weaker-norm texture modeling, and it can well remove the noises while preserving the valuable edges and contours of the image. The iteratively reweighted l1 (IRL1) algorithm is employed to solve the proposed non-convex minimization problem. For each subproblem, we use the alternating direction method of multipliers (ADMM) algorithm to solve it. Numerical results validate the effectiveness of the proposed model for both synthetic and real images in terms of peak signal-to-noise ratio (PSNR) and mean structural similarity index (MSSIM).</abstract><cop>New York</cop><pub>Elsevier Inc</pub><doi>10.1016/j.apm.2018.12.021</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0001-9140-4745</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0307-904X |
ispartof | Applied Mathematical Modelling, 2019-05, Vol.69, p.355-377 |
issn | 0307-904X 1088-8691 0307-904X |
language | eng |
recordid | cdi_proquest_journals_2210871943 |
source | Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Business Source Complete; Education Source |
subjects | ADMM algorithm Algorithms Decomposition Image processing Image restoration Image segmentation IRL1 algorithm Mathematical models Non-convex Non-smooth Object recognition Optimization Regularization Sobolev space Variational decomposition |
title | Non-convex and non-smooth variational decomposition for image restoration |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T14%3A44%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non-convex%20and%20non-smooth%20variational%20decomposition%20for%20image%20restoration&rft.jtitle=Applied%20Mathematical%20Modelling&rft.au=Liming,%20Tang&rft.date=2019-05&rft.volume=69&rft.spage=355&rft.epage=377&rft.pages=355-377&rft.issn=0307-904X&rft.eissn=0307-904X&rft_id=info:doi/10.1016/j.apm.2018.12.021&rft_dat=%3Cproquest_cross%3E2210871943%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2210871943&rft_id=info:pmid/&rft_els_id=S0307904X18306310&rfr_iscdi=true |