Numerical simulation of hydro-mechanical coupling in fractured vuggy porous media using the equivalent continuum model and embedded discrete fracture model
•An efficient numerical model is proposed to simulate the hydro-mechanical coupling in the fractured vuggy porous media containing multi-scale fractures and vugs.•An improved equivalent continuum model, which is obtained through the asymptotic homogenization method, is applied to model micro fractur...
Gespeichert in:
Veröffentlicht in: | Advances in water resources 2019-04, Vol.126, p.137-154 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 154 |
---|---|
container_issue | |
container_start_page | 137 |
container_title | Advances in water resources |
container_volume | 126 |
creator | Yan, Xia Huang, Zhaoqin Yao, Jun Zhang, Zhao Liu, Piyang Li, Yang Fan, Dongyan |
description | •An efficient numerical model is proposed to simulate the hydro-mechanical coupling in the fractured vuggy porous media containing multi-scale fractures and vugs.•An improved equivalent continuum model, which is obtained through the asymptotic homogenization method, is applied to model micro fractures and vugs.•New mixed space discretization (i.e., mimetic finite difference method for flow and stabilized eXtended finite element method for geomechanics) and fully coupled methods are applied to solve the proposed model.
In this study, an efficient numerical model is proposed to simulate the hydro-mechanical coupling in the fractured vuggy porous media containing multi-scale fractures and vugs. Specifically, an improved Equivalent Continuum Model (ECM), which is obtained through the asymptotic homogenization method, is applied to model micro fractures and vugs, while macro fractures are modeled explicitly by using the Embedded Discrete Fracture Model (EDFM) and non-matching grids. As an important feature of the explicit representment, the effects of fillings and fluid pressure on preventing macro fractures from closing can be considered. After that, the new mixed space discretization (i.e., Mimetic Finite Difference (MFD) method for flow and stabilized eXtended Finite Element Method (XFEM) for geomechanics) and fully coupled methods are applied to solve the proposed model. The mixed space discretization can deal with complex heterogeneous properties (e.g., full tensor permeability), and yields the benefits of local mass conservation and numerical stability in space. Finally, we demonstrate the accuracy and application of the proposed model to capture the coupled hydro-mechanical impacts of multiscale fractures and vugs on fluid flow in fractured porous media. |
doi_str_mv | 10.1016/j.advwatres.2019.02.013 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2210867374</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0309170818305402</els_id><sourcerecordid>2210867374</sourcerecordid><originalsourceid>FETCH-LOGICAL-a366t-6462b99abb7d85b6d1033daa1b427b155c59f2685b796876e6aa393da5ef8b133</originalsourceid><addsrcrecordid>eNqFkctu2zAQRYmiBeqm_YYS6FoqHxYpLYOgLyBoNumaGJEjm4ZEOny48Lf0ZyvHRbZdzWLOnMHMJeQjZy1nXH0-tOBOv6EkzK1gfGiZaBmXr8iG91o0g-r0a7Jhkg0N16x_S97lfGCM9VstNuTPz7pg8hZmmv1SZyg-Bhonuj-7FJsF7R7Cc9vGepx92FEf6JTAlprQ0VPd7c70GFOsmS7oPNCaL1TZI8Wn6k8wYyjrdCg-1LrQJTqcKQRHcRnRuVXifLYJC754r9B78maCOeOHf_WG_Pr65fHue3P_8O3H3e19A1Kp0qitEuMwwDhq13ejcpxJ6QD4uBV65F1nu2ESam3pQfVaoQKQw0p0OPUjl_KGfLp6jyk-VczFHGJNYV1phOCsV1rq7UrpK2VTzDnhZI7JL5DOhjNzScIczEsS5pKEYcKwZ__tdRLXI04ek8nWY7DrtxLaYlz0_3X8Bcucms4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2210867374</pqid></control><display><type>article</type><title>Numerical simulation of hydro-mechanical coupling in fractured vuggy porous media using the equivalent continuum model and embedded discrete fracture model</title><source>Elsevier ScienceDirect Journals</source><creator>Yan, Xia ; Huang, Zhaoqin ; Yao, Jun ; Zhang, Zhao ; Liu, Piyang ; Li, Yang ; Fan, Dongyan</creator><creatorcontrib>Yan, Xia ; Huang, Zhaoqin ; Yao, Jun ; Zhang, Zhao ; Liu, Piyang ; Li, Yang ; Fan, Dongyan</creatorcontrib><description>•An efficient numerical model is proposed to simulate the hydro-mechanical coupling in the fractured vuggy porous media containing multi-scale fractures and vugs.•An improved equivalent continuum model, which is obtained through the asymptotic homogenization method, is applied to model micro fractures and vugs.•New mixed space discretization (i.e., mimetic finite difference method for flow and stabilized eXtended finite element method for geomechanics) and fully coupled methods are applied to solve the proposed model.
In this study, an efficient numerical model is proposed to simulate the hydro-mechanical coupling in the fractured vuggy porous media containing multi-scale fractures and vugs. Specifically, an improved Equivalent Continuum Model (ECM), which is obtained through the asymptotic homogenization method, is applied to model micro fractures and vugs, while macro fractures are modeled explicitly by using the Embedded Discrete Fracture Model (EDFM) and non-matching grids. As an important feature of the explicit representment, the effects of fillings and fluid pressure on preventing macro fractures from closing can be considered. After that, the new mixed space discretization (i.e., Mimetic Finite Difference (MFD) method for flow and stabilized eXtended Finite Element Method (XFEM) for geomechanics) and fully coupled methods are applied to solve the proposed model. The mixed space discretization can deal with complex heterogeneous properties (e.g., full tensor permeability), and yields the benefits of local mass conservation and numerical stability in space. Finally, we demonstrate the accuracy and application of the proposed model to capture the coupled hydro-mechanical impacts of multiscale fractures and vugs on fluid flow in fractured porous media.</description><identifier>ISSN: 0309-1708</identifier><identifier>EISSN: 1872-9657</identifier><identifier>DOI: 10.1016/j.advwatres.2019.02.013</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Asymptotic methods ; Computational fluid dynamics ; Computer simulation ; Conservation ; Continuum modeling ; Coupling ; Discretization ; Embedded discrete fracture model ; Equivalence ; Equivalent continuum model ; Finite difference method ; Finite element method ; Fluid flow ; Fluid pressure ; Fractured vuggy porous media ; Fractures ; Geomechanics ; Homogenization method ; Hydro-mechanical coupling ; Mathematical analysis ; Mathematical models ; Mechanical properties ; Model accuracy ; Numerical models ; Numerical simulations ; Numerical stability ; Permeability ; Porous media ; Porous media flow ; Tensors</subject><ispartof>Advances in water resources, 2019-04, Vol.126, p.137-154</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright Elsevier Science Ltd. Apr 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a366t-6462b99abb7d85b6d1033daa1b427b155c59f2685b796876e6aa393da5ef8b133</citedby><cites>FETCH-LOGICAL-a366t-6462b99abb7d85b6d1033daa1b427b155c59f2685b796876e6aa393da5ef8b133</cites><orcidid>0000-0003-0523-5071</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0309170818305402$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Yan, Xia</creatorcontrib><creatorcontrib>Huang, Zhaoqin</creatorcontrib><creatorcontrib>Yao, Jun</creatorcontrib><creatorcontrib>Zhang, Zhao</creatorcontrib><creatorcontrib>Liu, Piyang</creatorcontrib><creatorcontrib>Li, Yang</creatorcontrib><creatorcontrib>Fan, Dongyan</creatorcontrib><title>Numerical simulation of hydro-mechanical coupling in fractured vuggy porous media using the equivalent continuum model and embedded discrete fracture model</title><title>Advances in water resources</title><description>•An efficient numerical model is proposed to simulate the hydro-mechanical coupling in the fractured vuggy porous media containing multi-scale fractures and vugs.•An improved equivalent continuum model, which is obtained through the asymptotic homogenization method, is applied to model micro fractures and vugs.•New mixed space discretization (i.e., mimetic finite difference method for flow and stabilized eXtended finite element method for geomechanics) and fully coupled methods are applied to solve the proposed model.
In this study, an efficient numerical model is proposed to simulate the hydro-mechanical coupling in the fractured vuggy porous media containing multi-scale fractures and vugs. Specifically, an improved Equivalent Continuum Model (ECM), which is obtained through the asymptotic homogenization method, is applied to model micro fractures and vugs, while macro fractures are modeled explicitly by using the Embedded Discrete Fracture Model (EDFM) and non-matching grids. As an important feature of the explicit representment, the effects of fillings and fluid pressure on preventing macro fractures from closing can be considered. After that, the new mixed space discretization (i.e., Mimetic Finite Difference (MFD) method for flow and stabilized eXtended Finite Element Method (XFEM) for geomechanics) and fully coupled methods are applied to solve the proposed model. The mixed space discretization can deal with complex heterogeneous properties (e.g., full tensor permeability), and yields the benefits of local mass conservation and numerical stability in space. Finally, we demonstrate the accuracy and application of the proposed model to capture the coupled hydro-mechanical impacts of multiscale fractures and vugs on fluid flow in fractured porous media.</description><subject>Asymptotic methods</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Conservation</subject><subject>Continuum modeling</subject><subject>Coupling</subject><subject>Discretization</subject><subject>Embedded discrete fracture model</subject><subject>Equivalence</subject><subject>Equivalent continuum model</subject><subject>Finite difference method</subject><subject>Finite element method</subject><subject>Fluid flow</subject><subject>Fluid pressure</subject><subject>Fractured vuggy porous media</subject><subject>Fractures</subject><subject>Geomechanics</subject><subject>Homogenization method</subject><subject>Hydro-mechanical coupling</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mechanical properties</subject><subject>Model accuracy</subject><subject>Numerical models</subject><subject>Numerical simulations</subject><subject>Numerical stability</subject><subject>Permeability</subject><subject>Porous media</subject><subject>Porous media flow</subject><subject>Tensors</subject><issn>0309-1708</issn><issn>1872-9657</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkctu2zAQRYmiBeqm_YYS6FoqHxYpLYOgLyBoNumaGJEjm4ZEOny48Lf0ZyvHRbZdzWLOnMHMJeQjZy1nXH0-tOBOv6EkzK1gfGiZaBmXr8iG91o0g-r0a7Jhkg0N16x_S97lfGCM9VstNuTPz7pg8hZmmv1SZyg-Bhonuj-7FJsF7R7Cc9vGepx92FEf6JTAlprQ0VPd7c70GFOsmS7oPNCaL1TZI8Wn6k8wYyjrdCg-1LrQJTqcKQRHcRnRuVXifLYJC754r9B78maCOeOHf_WG_Pr65fHue3P_8O3H3e19A1Kp0qitEuMwwDhq13ejcpxJ6QD4uBV65F1nu2ESam3pQfVaoQKQw0p0OPUjl_KGfLp6jyk-VczFHGJNYV1phOCsV1rq7UrpK2VTzDnhZI7JL5DOhjNzScIczEsS5pKEYcKwZ__tdRLXI04ek8nWY7DrtxLaYlz0_3X8Bcucms4</recordid><startdate>201904</startdate><enddate>201904</enddate><creator>Yan, Xia</creator><creator>Huang, Zhaoqin</creator><creator>Yao, Jun</creator><creator>Zhang, Zhao</creator><creator>Liu, Piyang</creator><creator>Li, Yang</creator><creator>Fan, Dongyan</creator><general>Elsevier Ltd</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QH</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SE</scope><scope>7SR</scope><scope>7ST</scope><scope>7T7</scope><scope>7TA</scope><scope>7TG</scope><scope>7UA</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>F28</scope><scope>FR3</scope><scope>H8G</scope><scope>H97</scope><scope>JG9</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>P64</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0003-0523-5071</orcidid></search><sort><creationdate>201904</creationdate><title>Numerical simulation of hydro-mechanical coupling in fractured vuggy porous media using the equivalent continuum model and embedded discrete fracture model</title><author>Yan, Xia ; Huang, Zhaoqin ; Yao, Jun ; Zhang, Zhao ; Liu, Piyang ; Li, Yang ; Fan, Dongyan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a366t-6462b99abb7d85b6d1033daa1b427b155c59f2685b796876e6aa393da5ef8b133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Asymptotic methods</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Conservation</topic><topic>Continuum modeling</topic><topic>Coupling</topic><topic>Discretization</topic><topic>Embedded discrete fracture model</topic><topic>Equivalence</topic><topic>Equivalent continuum model</topic><topic>Finite difference method</topic><topic>Finite element method</topic><topic>Fluid flow</topic><topic>Fluid pressure</topic><topic>Fractured vuggy porous media</topic><topic>Fractures</topic><topic>Geomechanics</topic><topic>Homogenization method</topic><topic>Hydro-mechanical coupling</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mechanical properties</topic><topic>Model accuracy</topic><topic>Numerical models</topic><topic>Numerical simulations</topic><topic>Numerical stability</topic><topic>Permeability</topic><topic>Porous media</topic><topic>Porous media flow</topic><topic>Tensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yan, Xia</creatorcontrib><creatorcontrib>Huang, Zhaoqin</creatorcontrib><creatorcontrib>Yao, Jun</creatorcontrib><creatorcontrib>Zhang, Zhao</creatorcontrib><creatorcontrib>Liu, Piyang</creatorcontrib><creatorcontrib>Li, Yang</creatorcontrib><creatorcontrib>Fan, Dongyan</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Aqualine</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Copper Technical Reference Library</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>Materials Research Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Advances in water resources</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yan, Xia</au><au>Huang, Zhaoqin</au><au>Yao, Jun</au><au>Zhang, Zhao</au><au>Liu, Piyang</au><au>Li, Yang</au><au>Fan, Dongyan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical simulation of hydro-mechanical coupling in fractured vuggy porous media using the equivalent continuum model and embedded discrete fracture model</atitle><jtitle>Advances in water resources</jtitle><date>2019-04</date><risdate>2019</risdate><volume>126</volume><spage>137</spage><epage>154</epage><pages>137-154</pages><issn>0309-1708</issn><eissn>1872-9657</eissn><abstract>•An efficient numerical model is proposed to simulate the hydro-mechanical coupling in the fractured vuggy porous media containing multi-scale fractures and vugs.•An improved equivalent continuum model, which is obtained through the asymptotic homogenization method, is applied to model micro fractures and vugs.•New mixed space discretization (i.e., mimetic finite difference method for flow and stabilized eXtended finite element method for geomechanics) and fully coupled methods are applied to solve the proposed model.
In this study, an efficient numerical model is proposed to simulate the hydro-mechanical coupling in the fractured vuggy porous media containing multi-scale fractures and vugs. Specifically, an improved Equivalent Continuum Model (ECM), which is obtained through the asymptotic homogenization method, is applied to model micro fractures and vugs, while macro fractures are modeled explicitly by using the Embedded Discrete Fracture Model (EDFM) and non-matching grids. As an important feature of the explicit representment, the effects of fillings and fluid pressure on preventing macro fractures from closing can be considered. After that, the new mixed space discretization (i.e., Mimetic Finite Difference (MFD) method for flow and stabilized eXtended Finite Element Method (XFEM) for geomechanics) and fully coupled methods are applied to solve the proposed model. The mixed space discretization can deal with complex heterogeneous properties (e.g., full tensor permeability), and yields the benefits of local mass conservation and numerical stability in space. Finally, we demonstrate the accuracy and application of the proposed model to capture the coupled hydro-mechanical impacts of multiscale fractures and vugs on fluid flow in fractured porous media.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.advwatres.2019.02.013</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0003-0523-5071</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0309-1708 |
ispartof | Advances in water resources, 2019-04, Vol.126, p.137-154 |
issn | 0309-1708 1872-9657 |
language | eng |
recordid | cdi_proquest_journals_2210867374 |
source | Elsevier ScienceDirect Journals |
subjects | Asymptotic methods Computational fluid dynamics Computer simulation Conservation Continuum modeling Coupling Discretization Embedded discrete fracture model Equivalence Equivalent continuum model Finite difference method Finite element method Fluid flow Fluid pressure Fractured vuggy porous media Fractures Geomechanics Homogenization method Hydro-mechanical coupling Mathematical analysis Mathematical models Mechanical properties Model accuracy Numerical models Numerical simulations Numerical stability Permeability Porous media Porous media flow Tensors |
title | Numerical simulation of hydro-mechanical coupling in fractured vuggy porous media using the equivalent continuum model and embedded discrete fracture model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T11%3A26%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20simulation%20of%20hydro-mechanical%20coupling%20in%20fractured%20vuggy%20porous%20media%20using%20the%20equivalent%20continuum%20model%20and%20embedded%20discrete%20fracture%20model&rft.jtitle=Advances%20in%20water%20resources&rft.au=Yan,%20Xia&rft.date=2019-04&rft.volume=126&rft.spage=137&rft.epage=154&rft.pages=137-154&rft.issn=0309-1708&rft.eissn=1872-9657&rft_id=info:doi/10.1016/j.advwatres.2019.02.013&rft_dat=%3Cproquest_cross%3E2210867374%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2210867374&rft_id=info:pmid/&rft_els_id=S0309170818305402&rfr_iscdi=true |