Numerical simulation of hydro-mechanical coupling in fractured vuggy porous media using the equivalent continuum model and embedded discrete fracture model

•An efficient numerical model is proposed to simulate the hydro-mechanical coupling in the fractured vuggy porous media containing multi-scale fractures and vugs.•An improved equivalent continuum model, which is obtained through the asymptotic homogenization method, is applied to model micro fractur...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in water resources 2019-04, Vol.126, p.137-154
Hauptverfasser: Yan, Xia, Huang, Zhaoqin, Yao, Jun, Zhang, Zhao, Liu, Piyang, Li, Yang, Fan, Dongyan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 154
container_issue
container_start_page 137
container_title Advances in water resources
container_volume 126
creator Yan, Xia
Huang, Zhaoqin
Yao, Jun
Zhang, Zhao
Liu, Piyang
Li, Yang
Fan, Dongyan
description •An efficient numerical model is proposed to simulate the hydro-mechanical coupling in the fractured vuggy porous media containing multi-scale fractures and vugs.•An improved equivalent continuum model, which is obtained through the asymptotic homogenization method, is applied to model micro fractures and vugs.•New mixed space discretization (i.e., mimetic finite difference method for flow and stabilized eXtended finite element method for geomechanics) and fully coupled methods are applied to solve the proposed model. In this study, an efficient numerical model is proposed to simulate the hydro-mechanical coupling in the fractured vuggy porous media containing multi-scale fractures and vugs. Specifically, an improved Equivalent Continuum Model (ECM), which is obtained through the asymptotic homogenization method, is applied to model micro fractures and vugs, while macro fractures are modeled explicitly by using the Embedded Discrete Fracture Model (EDFM) and non-matching grids. As an important feature of the explicit representment, the effects of fillings and fluid pressure on preventing macro fractures from closing can be considered. After that, the new mixed space discretization (i.e., Mimetic Finite Difference (MFD) method for flow and stabilized eXtended Finite Element Method (XFEM) for geomechanics) and fully coupled methods are applied to solve the proposed model. The mixed space discretization can deal with complex heterogeneous properties (e.g., full tensor permeability), and yields the benefits of local mass conservation and numerical stability in space. Finally, we demonstrate the accuracy and application of the proposed model to capture the coupled hydro-mechanical impacts of multiscale fractures and vugs on fluid flow in fractured porous media.
doi_str_mv 10.1016/j.advwatres.2019.02.013
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2210867374</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0309170818305402</els_id><sourcerecordid>2210867374</sourcerecordid><originalsourceid>FETCH-LOGICAL-a366t-6462b99abb7d85b6d1033daa1b427b155c59f2685b796876e6aa393da5ef8b133</originalsourceid><addsrcrecordid>eNqFkctu2zAQRYmiBeqm_YYS6FoqHxYpLYOgLyBoNumaGJEjm4ZEOny48Lf0ZyvHRbZdzWLOnMHMJeQjZy1nXH0-tOBOv6EkzK1gfGiZaBmXr8iG91o0g-r0a7Jhkg0N16x_S97lfGCM9VstNuTPz7pg8hZmmv1SZyg-Bhonuj-7FJsF7R7Cc9vGepx92FEf6JTAlprQ0VPd7c70GFOsmS7oPNCaL1TZI8Wn6k8wYyjrdCg-1LrQJTqcKQRHcRnRuVXifLYJC754r9B78maCOeOHf_WG_Pr65fHue3P_8O3H3e19A1Kp0qitEuMwwDhq13ejcpxJ6QD4uBV65F1nu2ESam3pQfVaoQKQw0p0OPUjl_KGfLp6jyk-VczFHGJNYV1phOCsV1rq7UrpK2VTzDnhZI7JL5DOhjNzScIczEsS5pKEYcKwZ__tdRLXI04ek8nWY7DrtxLaYlz0_3X8Bcucms4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2210867374</pqid></control><display><type>article</type><title>Numerical simulation of hydro-mechanical coupling in fractured vuggy porous media using the equivalent continuum model and embedded discrete fracture model</title><source>Elsevier ScienceDirect Journals</source><creator>Yan, Xia ; Huang, Zhaoqin ; Yao, Jun ; Zhang, Zhao ; Liu, Piyang ; Li, Yang ; Fan, Dongyan</creator><creatorcontrib>Yan, Xia ; Huang, Zhaoqin ; Yao, Jun ; Zhang, Zhao ; Liu, Piyang ; Li, Yang ; Fan, Dongyan</creatorcontrib><description>•An efficient numerical model is proposed to simulate the hydro-mechanical coupling in the fractured vuggy porous media containing multi-scale fractures and vugs.•An improved equivalent continuum model, which is obtained through the asymptotic homogenization method, is applied to model micro fractures and vugs.•New mixed space discretization (i.e., mimetic finite difference method for flow and stabilized eXtended finite element method for geomechanics) and fully coupled methods are applied to solve the proposed model. In this study, an efficient numerical model is proposed to simulate the hydro-mechanical coupling in the fractured vuggy porous media containing multi-scale fractures and vugs. Specifically, an improved Equivalent Continuum Model (ECM), which is obtained through the asymptotic homogenization method, is applied to model micro fractures and vugs, while macro fractures are modeled explicitly by using the Embedded Discrete Fracture Model (EDFM) and non-matching grids. As an important feature of the explicit representment, the effects of fillings and fluid pressure on preventing macro fractures from closing can be considered. After that, the new mixed space discretization (i.e., Mimetic Finite Difference (MFD) method for flow and stabilized eXtended Finite Element Method (XFEM) for geomechanics) and fully coupled methods are applied to solve the proposed model. The mixed space discretization can deal with complex heterogeneous properties (e.g., full tensor permeability), and yields the benefits of local mass conservation and numerical stability in space. Finally, we demonstrate the accuracy and application of the proposed model to capture the coupled hydro-mechanical impacts of multiscale fractures and vugs on fluid flow in fractured porous media.</description><identifier>ISSN: 0309-1708</identifier><identifier>EISSN: 1872-9657</identifier><identifier>DOI: 10.1016/j.advwatres.2019.02.013</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Asymptotic methods ; Computational fluid dynamics ; Computer simulation ; Conservation ; Continuum modeling ; Coupling ; Discretization ; Embedded discrete fracture model ; Equivalence ; Equivalent continuum model ; Finite difference method ; Finite element method ; Fluid flow ; Fluid pressure ; Fractured vuggy porous media ; Fractures ; Geomechanics ; Homogenization method ; Hydro-mechanical coupling ; Mathematical analysis ; Mathematical models ; Mechanical properties ; Model accuracy ; Numerical models ; Numerical simulations ; Numerical stability ; Permeability ; Porous media ; Porous media flow ; Tensors</subject><ispartof>Advances in water resources, 2019-04, Vol.126, p.137-154</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright Elsevier Science Ltd. Apr 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a366t-6462b99abb7d85b6d1033daa1b427b155c59f2685b796876e6aa393da5ef8b133</citedby><cites>FETCH-LOGICAL-a366t-6462b99abb7d85b6d1033daa1b427b155c59f2685b796876e6aa393da5ef8b133</cites><orcidid>0000-0003-0523-5071</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0309170818305402$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Yan, Xia</creatorcontrib><creatorcontrib>Huang, Zhaoqin</creatorcontrib><creatorcontrib>Yao, Jun</creatorcontrib><creatorcontrib>Zhang, Zhao</creatorcontrib><creatorcontrib>Liu, Piyang</creatorcontrib><creatorcontrib>Li, Yang</creatorcontrib><creatorcontrib>Fan, Dongyan</creatorcontrib><title>Numerical simulation of hydro-mechanical coupling in fractured vuggy porous media using the equivalent continuum model and embedded discrete fracture model</title><title>Advances in water resources</title><description>•An efficient numerical model is proposed to simulate the hydro-mechanical coupling in the fractured vuggy porous media containing multi-scale fractures and vugs.•An improved equivalent continuum model, which is obtained through the asymptotic homogenization method, is applied to model micro fractures and vugs.•New mixed space discretization (i.e., mimetic finite difference method for flow and stabilized eXtended finite element method for geomechanics) and fully coupled methods are applied to solve the proposed model. In this study, an efficient numerical model is proposed to simulate the hydro-mechanical coupling in the fractured vuggy porous media containing multi-scale fractures and vugs. Specifically, an improved Equivalent Continuum Model (ECM), which is obtained through the asymptotic homogenization method, is applied to model micro fractures and vugs, while macro fractures are modeled explicitly by using the Embedded Discrete Fracture Model (EDFM) and non-matching grids. As an important feature of the explicit representment, the effects of fillings and fluid pressure on preventing macro fractures from closing can be considered. After that, the new mixed space discretization (i.e., Mimetic Finite Difference (MFD) method for flow and stabilized eXtended Finite Element Method (XFEM) for geomechanics) and fully coupled methods are applied to solve the proposed model. The mixed space discretization can deal with complex heterogeneous properties (e.g., full tensor permeability), and yields the benefits of local mass conservation and numerical stability in space. Finally, we demonstrate the accuracy and application of the proposed model to capture the coupled hydro-mechanical impacts of multiscale fractures and vugs on fluid flow in fractured porous media.</description><subject>Asymptotic methods</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Conservation</subject><subject>Continuum modeling</subject><subject>Coupling</subject><subject>Discretization</subject><subject>Embedded discrete fracture model</subject><subject>Equivalence</subject><subject>Equivalent continuum model</subject><subject>Finite difference method</subject><subject>Finite element method</subject><subject>Fluid flow</subject><subject>Fluid pressure</subject><subject>Fractured vuggy porous media</subject><subject>Fractures</subject><subject>Geomechanics</subject><subject>Homogenization method</subject><subject>Hydro-mechanical coupling</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mechanical properties</subject><subject>Model accuracy</subject><subject>Numerical models</subject><subject>Numerical simulations</subject><subject>Numerical stability</subject><subject>Permeability</subject><subject>Porous media</subject><subject>Porous media flow</subject><subject>Tensors</subject><issn>0309-1708</issn><issn>1872-9657</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkctu2zAQRYmiBeqm_YYS6FoqHxYpLYOgLyBoNumaGJEjm4ZEOny48Lf0ZyvHRbZdzWLOnMHMJeQjZy1nXH0-tOBOv6EkzK1gfGiZaBmXr8iG91o0g-r0a7Jhkg0N16x_S97lfGCM9VstNuTPz7pg8hZmmv1SZyg-Bhonuj-7FJsF7R7Cc9vGepx92FEf6JTAlprQ0VPd7c70GFOsmS7oPNCaL1TZI8Wn6k8wYyjrdCg-1LrQJTqcKQRHcRnRuVXifLYJC754r9B78maCOeOHf_WG_Pr65fHue3P_8O3H3e19A1Kp0qitEuMwwDhq13ejcpxJ6QD4uBV65F1nu2ESam3pQfVaoQKQw0p0OPUjl_KGfLp6jyk-VczFHGJNYV1phOCsV1rq7UrpK2VTzDnhZI7JL5DOhjNzScIczEsS5pKEYcKwZ__tdRLXI04ek8nWY7DrtxLaYlz0_3X8Bcucms4</recordid><startdate>201904</startdate><enddate>201904</enddate><creator>Yan, Xia</creator><creator>Huang, Zhaoqin</creator><creator>Yao, Jun</creator><creator>Zhang, Zhao</creator><creator>Liu, Piyang</creator><creator>Li, Yang</creator><creator>Fan, Dongyan</creator><general>Elsevier Ltd</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QH</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SE</scope><scope>7SR</scope><scope>7ST</scope><scope>7T7</scope><scope>7TA</scope><scope>7TG</scope><scope>7UA</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>F28</scope><scope>FR3</scope><scope>H8G</scope><scope>H97</scope><scope>JG9</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>P64</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0003-0523-5071</orcidid></search><sort><creationdate>201904</creationdate><title>Numerical simulation of hydro-mechanical coupling in fractured vuggy porous media using the equivalent continuum model and embedded discrete fracture model</title><author>Yan, Xia ; Huang, Zhaoqin ; Yao, Jun ; Zhang, Zhao ; Liu, Piyang ; Li, Yang ; Fan, Dongyan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a366t-6462b99abb7d85b6d1033daa1b427b155c59f2685b796876e6aa393da5ef8b133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Asymptotic methods</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Conservation</topic><topic>Continuum modeling</topic><topic>Coupling</topic><topic>Discretization</topic><topic>Embedded discrete fracture model</topic><topic>Equivalence</topic><topic>Equivalent continuum model</topic><topic>Finite difference method</topic><topic>Finite element method</topic><topic>Fluid flow</topic><topic>Fluid pressure</topic><topic>Fractured vuggy porous media</topic><topic>Fractures</topic><topic>Geomechanics</topic><topic>Homogenization method</topic><topic>Hydro-mechanical coupling</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mechanical properties</topic><topic>Model accuracy</topic><topic>Numerical models</topic><topic>Numerical simulations</topic><topic>Numerical stability</topic><topic>Permeability</topic><topic>Porous media</topic><topic>Porous media flow</topic><topic>Tensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yan, Xia</creatorcontrib><creatorcontrib>Huang, Zhaoqin</creatorcontrib><creatorcontrib>Yao, Jun</creatorcontrib><creatorcontrib>Zhang, Zhao</creatorcontrib><creatorcontrib>Liu, Piyang</creatorcontrib><creatorcontrib>Li, Yang</creatorcontrib><creatorcontrib>Fan, Dongyan</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Aqualine</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Copper Technical Reference Library</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Materials Research Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Advances in water resources</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yan, Xia</au><au>Huang, Zhaoqin</au><au>Yao, Jun</au><au>Zhang, Zhao</au><au>Liu, Piyang</au><au>Li, Yang</au><au>Fan, Dongyan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical simulation of hydro-mechanical coupling in fractured vuggy porous media using the equivalent continuum model and embedded discrete fracture model</atitle><jtitle>Advances in water resources</jtitle><date>2019-04</date><risdate>2019</risdate><volume>126</volume><spage>137</spage><epage>154</epage><pages>137-154</pages><issn>0309-1708</issn><eissn>1872-9657</eissn><abstract>•An efficient numerical model is proposed to simulate the hydro-mechanical coupling in the fractured vuggy porous media containing multi-scale fractures and vugs.•An improved equivalent continuum model, which is obtained through the asymptotic homogenization method, is applied to model micro fractures and vugs.•New mixed space discretization (i.e., mimetic finite difference method for flow and stabilized eXtended finite element method for geomechanics) and fully coupled methods are applied to solve the proposed model. In this study, an efficient numerical model is proposed to simulate the hydro-mechanical coupling in the fractured vuggy porous media containing multi-scale fractures and vugs. Specifically, an improved Equivalent Continuum Model (ECM), which is obtained through the asymptotic homogenization method, is applied to model micro fractures and vugs, while macro fractures are modeled explicitly by using the Embedded Discrete Fracture Model (EDFM) and non-matching grids. As an important feature of the explicit representment, the effects of fillings and fluid pressure on preventing macro fractures from closing can be considered. After that, the new mixed space discretization (i.e., Mimetic Finite Difference (MFD) method for flow and stabilized eXtended Finite Element Method (XFEM) for geomechanics) and fully coupled methods are applied to solve the proposed model. The mixed space discretization can deal with complex heterogeneous properties (e.g., full tensor permeability), and yields the benefits of local mass conservation and numerical stability in space. Finally, we demonstrate the accuracy and application of the proposed model to capture the coupled hydro-mechanical impacts of multiscale fractures and vugs on fluid flow in fractured porous media.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.advwatres.2019.02.013</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0003-0523-5071</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0309-1708
ispartof Advances in water resources, 2019-04, Vol.126, p.137-154
issn 0309-1708
1872-9657
language eng
recordid cdi_proquest_journals_2210867374
source Elsevier ScienceDirect Journals
subjects Asymptotic methods
Computational fluid dynamics
Computer simulation
Conservation
Continuum modeling
Coupling
Discretization
Embedded discrete fracture model
Equivalence
Equivalent continuum model
Finite difference method
Finite element method
Fluid flow
Fluid pressure
Fractured vuggy porous media
Fractures
Geomechanics
Homogenization method
Hydro-mechanical coupling
Mathematical analysis
Mathematical models
Mechanical properties
Model accuracy
Numerical models
Numerical simulations
Numerical stability
Permeability
Porous media
Porous media flow
Tensors
title Numerical simulation of hydro-mechanical coupling in fractured vuggy porous media using the equivalent continuum model and embedded discrete fracture model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T11%3A26%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20simulation%20of%20hydro-mechanical%20coupling%20in%20fractured%20vuggy%20porous%20media%20using%20the%20equivalent%20continuum%20model%20and%20embedded%20discrete%20fracture%20model&rft.jtitle=Advances%20in%20water%20resources&rft.au=Yan,%20Xia&rft.date=2019-04&rft.volume=126&rft.spage=137&rft.epage=154&rft.pages=137-154&rft.issn=0309-1708&rft.eissn=1872-9657&rft_id=info:doi/10.1016/j.advwatres.2019.02.013&rft_dat=%3Cproquest_cross%3E2210867374%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2210867374&rft_id=info:pmid/&rft_els_id=S0309170818305402&rfr_iscdi=true