Numerical simulation of proppant transport in propagating fractures with the multi-phase particle-in-cell method

In this work, the proppant transport process in large-scale propagating fractures is simulated using an Eulerian–Lagrangian method. Fracture propagation is solved using the Perkins–Kern–Nordgren(PKN) model, while the fluid-particle system is solved with the multi-phase particle-in-cell (MP-PIC) meth...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fuel (Guildford) 2019-06, Vol.245, p.316-335
Hauptverfasser: Zeng, Junsheng, Li, Heng, Zhang, Dongxiao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 335
container_issue
container_start_page 316
container_title Fuel (Guildford)
container_volume 245
creator Zeng, Junsheng
Li, Heng
Zhang, Dongxiao
description In this work, the proppant transport process in large-scale propagating fractures is simulated using an Eulerian–Lagrangian method. Fracture propagation is solved using the Perkins–Kern–Nordgren(PKN) model, while the fluid-particle system is solved with the multi-phase particle-in-cell (MP-PIC) method. The fluid motion is governed by volume-averaged Navier–Stokes equations, and solved using the finite volume method, and the particle motion is solved by applying Newton’s second law in a Lagrangian manner. Based on the original MP-PIC method, an extended 2D system of governing equations for fluid-particle flow is derived to solve the moving boundary problems associated with fracture propagation. By means of this method, the fluid-particle interaction is fully coupled, and the propagating fracture is considered as a prior-known boundary for the fluid and particle phases. Several numerical experiments are performed to validate the method for simulating fluid motion and proppant settling behaviors in a fracture through comparison with results in the literature. The simulation results of the 2D framework are also compared with those of 3D framework and show a good agreement. Large-scale problems of proppant transport in propagating fractures for different proppant and fracturing fluid properties, including the leak-off effect, are then simulated using this method. The Lagrangian feature of the MP-PIC method allows for flexible design of proppant injection, such as injection of proppant with multi-densities and/or multi-sizes.
doi_str_mv 10.1016/j.fuel.2019.02.056
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2210866706</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0016236119302601</els_id><sourcerecordid>2210866706</sourcerecordid><originalsourceid>FETCH-LOGICAL-c365t-efd6d89b92d2ff6cae7ef0f0faf23483dffe16bc1f5920e0ff3ea62e031a8a3b3</originalsourceid><addsrcrecordid>eNp9kM1LxDAQxYMouH78A54CnlsnyTZtwYssfsGiFz2HbDrZpnTbmqSK_71Z17PMYWD4vTePR8gVg5wBkzddbmfscw6szoHnUMgjsmBVKbKSFeKYLCBRGReSnZKzEDoAKKtiuSDTy7xD74zuaXC7udfRjQMdLZ38OE16iDR6PYRp9JG64feqtwkattR6beLsMdAvF1saW6TJILpsanVAOmkfnekxc0NmsO_pDmM7NhfkxOo-4OXfPifvD_dvq6ds_fr4vLpbZ0bIImZoG9lU9abmDbdWGo0lWkijLRfLSjTWIpMbw2xRc0CwVqCWHEEwXWmxEefk-uCbIn_MGKLqxtkP6aXinEElZQkyUfxAGT-G4NGqybud9t-Kgdo3qzq1b1btm1XAVWo2iW4PIkz5Px16FYzDwWDjPJqomtH9J_8BxrmF6w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2210866706</pqid></control><display><type>article</type><title>Numerical simulation of proppant transport in propagating fractures with the multi-phase particle-in-cell method</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Zeng, Junsheng ; Li, Heng ; Zhang, Dongxiao</creator><creatorcontrib>Zeng, Junsheng ; Li, Heng ; Zhang, Dongxiao</creatorcontrib><description>In this work, the proppant transport process in large-scale propagating fractures is simulated using an Eulerian–Lagrangian method. Fracture propagation is solved using the Perkins–Kern–Nordgren(PKN) model, while the fluid-particle system is solved with the multi-phase particle-in-cell (MP-PIC) method. The fluid motion is governed by volume-averaged Navier–Stokes equations, and solved using the finite volume method, and the particle motion is solved by applying Newton’s second law in a Lagrangian manner. Based on the original MP-PIC method, an extended 2D system of governing equations for fluid-particle flow is derived to solve the moving boundary problems associated with fracture propagation. By means of this method, the fluid-particle interaction is fully coupled, and the propagating fracture is considered as a prior-known boundary for the fluid and particle phases. Several numerical experiments are performed to validate the method for simulating fluid motion and proppant settling behaviors in a fracture through comparison with results in the literature. The simulation results of the 2D framework are also compared with those of 3D framework and show a good agreement. Large-scale problems of proppant transport in propagating fractures for different proppant and fracturing fluid properties, including the leak-off effect, are then simulated using this method. The Lagrangian feature of the MP-PIC method allows for flexible design of proppant injection, such as injection of proppant with multi-densities and/or multi-sizes.</description><identifier>ISSN: 0016-2361</identifier><identifier>EISSN: 1873-7153</identifier><identifier>DOI: 10.1016/j.fuel.2019.02.056</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Computational fluid dynamics ; Computer simulation ; Crack propagation ; Eulerian–Lagrangian method ; Finite volume method ; Fluid flow ; Fluid-proppant coupling ; Fracture mechanics ; Fracture propagation ; Injection ; Mathematical models ; Multi-phase particle-in-cell method ; Particle in cell technique ; Particle interactions ; Particle motion ; Proppant transport ; Transport processes</subject><ispartof>Fuel (Guildford), 2019-06, Vol.245, p.316-335</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jun 1, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c365t-efd6d89b92d2ff6cae7ef0f0faf23483dffe16bc1f5920e0ff3ea62e031a8a3b3</citedby><cites>FETCH-LOGICAL-c365t-efd6d89b92d2ff6cae7ef0f0faf23483dffe16bc1f5920e0ff3ea62e031a8a3b3</cites><orcidid>0000-0003-3093-179X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.fuel.2019.02.056$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Zeng, Junsheng</creatorcontrib><creatorcontrib>Li, Heng</creatorcontrib><creatorcontrib>Zhang, Dongxiao</creatorcontrib><title>Numerical simulation of proppant transport in propagating fractures with the multi-phase particle-in-cell method</title><title>Fuel (Guildford)</title><description>In this work, the proppant transport process in large-scale propagating fractures is simulated using an Eulerian–Lagrangian method. Fracture propagation is solved using the Perkins–Kern–Nordgren(PKN) model, while the fluid-particle system is solved with the multi-phase particle-in-cell (MP-PIC) method. The fluid motion is governed by volume-averaged Navier–Stokes equations, and solved using the finite volume method, and the particle motion is solved by applying Newton’s second law in a Lagrangian manner. Based on the original MP-PIC method, an extended 2D system of governing equations for fluid-particle flow is derived to solve the moving boundary problems associated with fracture propagation. By means of this method, the fluid-particle interaction is fully coupled, and the propagating fracture is considered as a prior-known boundary for the fluid and particle phases. Several numerical experiments are performed to validate the method for simulating fluid motion and proppant settling behaviors in a fracture through comparison with results in the literature. The simulation results of the 2D framework are also compared with those of 3D framework and show a good agreement. Large-scale problems of proppant transport in propagating fractures for different proppant and fracturing fluid properties, including the leak-off effect, are then simulated using this method. The Lagrangian feature of the MP-PIC method allows for flexible design of proppant injection, such as injection of proppant with multi-densities and/or multi-sizes.</description><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Crack propagation</subject><subject>Eulerian–Lagrangian method</subject><subject>Finite volume method</subject><subject>Fluid flow</subject><subject>Fluid-proppant coupling</subject><subject>Fracture mechanics</subject><subject>Fracture propagation</subject><subject>Injection</subject><subject>Mathematical models</subject><subject>Multi-phase particle-in-cell method</subject><subject>Particle in cell technique</subject><subject>Particle interactions</subject><subject>Particle motion</subject><subject>Proppant transport</subject><subject>Transport processes</subject><issn>0016-2361</issn><issn>1873-7153</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kM1LxDAQxYMouH78A54CnlsnyTZtwYssfsGiFz2HbDrZpnTbmqSK_71Z17PMYWD4vTePR8gVg5wBkzddbmfscw6szoHnUMgjsmBVKbKSFeKYLCBRGReSnZKzEDoAKKtiuSDTy7xD74zuaXC7udfRjQMdLZ38OE16iDR6PYRp9JG64feqtwkattR6beLsMdAvF1saW6TJILpsanVAOmkfnekxc0NmsO_pDmM7NhfkxOo-4OXfPifvD_dvq6ds_fr4vLpbZ0bIImZoG9lU9abmDbdWGo0lWkijLRfLSjTWIpMbw2xRc0CwVqCWHEEwXWmxEefk-uCbIn_MGKLqxtkP6aXinEElZQkyUfxAGT-G4NGqybud9t-Kgdo3qzq1b1btm1XAVWo2iW4PIkz5Px16FYzDwWDjPJqomtH9J_8BxrmF6w</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>Zeng, Junsheng</creator><creator>Li, Heng</creator><creator>Zhang, Dongxiao</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0003-3093-179X</orcidid></search><sort><creationdate>20190601</creationdate><title>Numerical simulation of proppant transport in propagating fractures with the multi-phase particle-in-cell method</title><author>Zeng, Junsheng ; Li, Heng ; Zhang, Dongxiao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c365t-efd6d89b92d2ff6cae7ef0f0faf23483dffe16bc1f5920e0ff3ea62e031a8a3b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Crack propagation</topic><topic>Eulerian–Lagrangian method</topic><topic>Finite volume method</topic><topic>Fluid flow</topic><topic>Fluid-proppant coupling</topic><topic>Fracture mechanics</topic><topic>Fracture propagation</topic><topic>Injection</topic><topic>Mathematical models</topic><topic>Multi-phase particle-in-cell method</topic><topic>Particle in cell technique</topic><topic>Particle interactions</topic><topic>Particle motion</topic><topic>Proppant transport</topic><topic>Transport processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zeng, Junsheng</creatorcontrib><creatorcontrib>Li, Heng</creatorcontrib><creatorcontrib>Zhang, Dongxiao</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Fuel (Guildford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zeng, Junsheng</au><au>Li, Heng</au><au>Zhang, Dongxiao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical simulation of proppant transport in propagating fractures with the multi-phase particle-in-cell method</atitle><jtitle>Fuel (Guildford)</jtitle><date>2019-06-01</date><risdate>2019</risdate><volume>245</volume><spage>316</spage><epage>335</epage><pages>316-335</pages><issn>0016-2361</issn><eissn>1873-7153</eissn><abstract>In this work, the proppant transport process in large-scale propagating fractures is simulated using an Eulerian–Lagrangian method. Fracture propagation is solved using the Perkins–Kern–Nordgren(PKN) model, while the fluid-particle system is solved with the multi-phase particle-in-cell (MP-PIC) method. The fluid motion is governed by volume-averaged Navier–Stokes equations, and solved using the finite volume method, and the particle motion is solved by applying Newton’s second law in a Lagrangian manner. Based on the original MP-PIC method, an extended 2D system of governing equations for fluid-particle flow is derived to solve the moving boundary problems associated with fracture propagation. By means of this method, the fluid-particle interaction is fully coupled, and the propagating fracture is considered as a prior-known boundary for the fluid and particle phases. Several numerical experiments are performed to validate the method for simulating fluid motion and proppant settling behaviors in a fracture through comparison with results in the literature. The simulation results of the 2D framework are also compared with those of 3D framework and show a good agreement. Large-scale problems of proppant transport in propagating fractures for different proppant and fracturing fluid properties, including the leak-off effect, are then simulated using this method. The Lagrangian feature of the MP-PIC method allows for flexible design of proppant injection, such as injection of proppant with multi-densities and/or multi-sizes.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.fuel.2019.02.056</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0003-3093-179X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0016-2361
ispartof Fuel (Guildford), 2019-06, Vol.245, p.316-335
issn 0016-2361
1873-7153
language eng
recordid cdi_proquest_journals_2210866706
source Elsevier ScienceDirect Journals Complete
subjects Computational fluid dynamics
Computer simulation
Crack propagation
Eulerian–Lagrangian method
Finite volume method
Fluid flow
Fluid-proppant coupling
Fracture mechanics
Fracture propagation
Injection
Mathematical models
Multi-phase particle-in-cell method
Particle in cell technique
Particle interactions
Particle motion
Proppant transport
Transport processes
title Numerical simulation of proppant transport in propagating fractures with the multi-phase particle-in-cell method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T11%3A20%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20simulation%20of%20proppant%20transport%20in%20propagating%20fractures%20with%20the%20multi-phase%20particle-in-cell%20method&rft.jtitle=Fuel%20(Guildford)&rft.au=Zeng,%20Junsheng&rft.date=2019-06-01&rft.volume=245&rft.spage=316&rft.epage=335&rft.pages=316-335&rft.issn=0016-2361&rft.eissn=1873-7153&rft_id=info:doi/10.1016/j.fuel.2019.02.056&rft_dat=%3Cproquest_cross%3E2210866706%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2210866706&rft_id=info:pmid/&rft_els_id=S0016236119302601&rfr_iscdi=true