Preparation of carbon encapsulated core-shell Fe@CoFe2O4 particles through the Kirkendall effect and application as advanced anode materials for lithium-ion batteries

Carbon encapsulated core-shell Fe@CoFe2O4 nanoparticles (Fe@CoFe2O4@C) are produced by using Kirkendall effect method and used as the anode material for lithium-ion batteries. During the discharge process, Fe and Co particles are synthesized at the shell of the nanoparticles and are pulverized to sm...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of electroanalytical chemistry (Lausanne, Switzerland) Switzerland), 2019-02, Vol.835, p.22-29
Hauptverfasser: Duan, Chaoyu, Zhu, Fuliang, Du, Mengqi, Meng, Yanshuang, Zhang, Yue
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 29
container_issue
container_start_page 22
container_title Journal of electroanalytical chemistry (Lausanne, Switzerland)
container_volume 835
creator Duan, Chaoyu
Zhu, Fuliang
Du, Mengqi
Meng, Yanshuang
Zhang, Yue
description Carbon encapsulated core-shell Fe@CoFe2O4 nanoparticles (Fe@CoFe2O4@C) are produced by using Kirkendall effect method and used as the anode material for lithium-ion batteries. During the discharge process, Fe and Co particles are synthesized at the shell of the nanoparticles and are pulverized to smaller grains in the low potential regions. These pulverized particles not only increase the contact area between electrolyte and active materials, but also shortens the transfer distance of Li+ and electron, leading to an enhanced capacity. In addition, the structure stability and electrical conductivity of CoFe2O4 (CFO) shell are improved by the thin carbon layer coated on the surface of the shell. Due to this special structure, the Fe@CoFe2O4@C electrode exhibits excellent cycle performance, delivering a capacity of 1911mAhg−1 after 500cycles at 0.3C (1C=1000mAg−1). It also shows superior rate capacities of 760.8, 735.6, 672.2, and 596.5mAhg−1 at the current densities of 1.0, 2.0, 5.0, and 10.0C, respectively.
doi_str_mv 10.1016/j.jelechem.2019.01.012
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2210855811</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1572665719300207</els_id><sourcerecordid>2210855811</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-706b2790bf3b7a75d2fb1dbcf6b7385b6cb7e0f336c1b588e0506a8495503b103</originalsourceid><addsrcrecordid>eNqFUc1q3DAQNqWFpmleIQh69kaSo5-9pSzdNiSQHtqzGMmjWq7XciU50Bfqc1Zm23NgYAbm-2Hma5prRneMMnkz7kac0A142nHK9jvKavFXzQXTqmu5kPvXdRaKt1IK9bZ5l_NIKdea8Yvmz9eECyQoIc4keuIg2Trh7GDJ6wQFe-JiwjYPOE3kiHeHeET-dEsqqwQ3YSZlSHH9MdSO5CGknzj3ULHoPbpCYO4JLMsU3NkEMoH-GWZXlWGOPZJTdUkBpkx8TGQKZQjrqd2wFsq2wvy-eeMrAK_-9cvm-_HTt8OX9vHp8_3h42PruKKlVVRarvbU-s4qUKLn3rLeOi-t6rSw0lmF1HeddMwKrZEKKkHf7oWgnWW0u2w-nHWXFH-tmIsZ45rmamk4Z1QLoRmrKHlGuRRzTujNksIJ0m_DqNkyMaP5n4nZMjGU1eKVeHcmYr3hOWAy2QXcXhFS_ZXpY3hJ4i_T8Jue</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2210855811</pqid></control><display><type>article</type><title>Preparation of carbon encapsulated core-shell Fe@CoFe2O4 particles through the Kirkendall effect and application as advanced anode materials for lithium-ion batteries</title><source>Elsevier ScienceDirect Journals</source><creator>Duan, Chaoyu ; Zhu, Fuliang ; Du, Mengqi ; Meng, Yanshuang ; Zhang, Yue</creator><creatorcontrib>Duan, Chaoyu ; Zhu, Fuliang ; Du, Mengqi ; Meng, Yanshuang ; Zhang, Yue</creatorcontrib><description>Carbon encapsulated core-shell Fe@CoFe2O4 nanoparticles (Fe@CoFe2O4@C) are produced by using Kirkendall effect method and used as the anode material for lithium-ion batteries. During the discharge process, Fe and Co particles are synthesized at the shell of the nanoparticles and are pulverized to smaller grains in the low potential regions. These pulverized particles not only increase the contact area between electrolyte and active materials, but also shortens the transfer distance of Li+ and electron, leading to an enhanced capacity. In addition, the structure stability and electrical conductivity of CoFe2O4 (CFO) shell are improved by the thin carbon layer coated on the surface of the shell. Due to this special structure, the Fe@CoFe2O4@C electrode exhibits excellent cycle performance, delivering a capacity of 1911mAhg−1 after 500cycles at 0.3C (1C=1000mAg−1). It also shows superior rate capacities of 760.8, 735.6, 672.2, and 596.5mAhg−1 at the current densities of 1.0, 2.0, 5.0, and 10.0C, respectively.</description><identifier>ISSN: 1572-6657</identifier><identifier>EISSN: 1873-2569</identifier><identifier>DOI: 10.1016/j.jelechem.2019.01.012</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Anode effect ; Carbon ; Cobalt ferrites ; CoFe2O4 ; Core-shell ; Electric contacts ; Electrical resistivity ; Electrode materials ; Encapsulation ; Iron ; Kirkendall effect ; Lithium ; Lithium ion batteries ; Nanoparticles ; Rechargeable batteries ; Shell stability ; Structural stability</subject><ispartof>Journal of electroanalytical chemistry (Lausanne, Switzerland), 2019-02, Vol.835, p.22-29</ispartof><rights>2019 Elsevier B.V.</rights><rights>Copyright Elsevier Science Ltd. Feb 15, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c270t-706b2790bf3b7a75d2fb1dbcf6b7385b6cb7e0f336c1b588e0506a8495503b103</citedby><cites>FETCH-LOGICAL-c270t-706b2790bf3b7a75d2fb1dbcf6b7385b6cb7e0f336c1b588e0506a8495503b103</cites><orcidid>0000-0001-6737-0135 ; 0000-0002-8873-1347</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1572665719300207$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Duan, Chaoyu</creatorcontrib><creatorcontrib>Zhu, Fuliang</creatorcontrib><creatorcontrib>Du, Mengqi</creatorcontrib><creatorcontrib>Meng, Yanshuang</creatorcontrib><creatorcontrib>Zhang, Yue</creatorcontrib><title>Preparation of carbon encapsulated core-shell Fe@CoFe2O4 particles through the Kirkendall effect and application as advanced anode materials for lithium-ion batteries</title><title>Journal of electroanalytical chemistry (Lausanne, Switzerland)</title><description>Carbon encapsulated core-shell Fe@CoFe2O4 nanoparticles (Fe@CoFe2O4@C) are produced by using Kirkendall effect method and used as the anode material for lithium-ion batteries. During the discharge process, Fe and Co particles are synthesized at the shell of the nanoparticles and are pulverized to smaller grains in the low potential regions. These pulverized particles not only increase the contact area between electrolyte and active materials, but also shortens the transfer distance of Li+ and electron, leading to an enhanced capacity. In addition, the structure stability and electrical conductivity of CoFe2O4 (CFO) shell are improved by the thin carbon layer coated on the surface of the shell. Due to this special structure, the Fe@CoFe2O4@C electrode exhibits excellent cycle performance, delivering a capacity of 1911mAhg−1 after 500cycles at 0.3C (1C=1000mAg−1). It also shows superior rate capacities of 760.8, 735.6, 672.2, and 596.5mAhg−1 at the current densities of 1.0, 2.0, 5.0, and 10.0C, respectively.</description><subject>Anode effect</subject><subject>Carbon</subject><subject>Cobalt ferrites</subject><subject>CoFe2O4</subject><subject>Core-shell</subject><subject>Electric contacts</subject><subject>Electrical resistivity</subject><subject>Electrode materials</subject><subject>Encapsulation</subject><subject>Iron</subject><subject>Kirkendall effect</subject><subject>Lithium</subject><subject>Lithium ion batteries</subject><subject>Nanoparticles</subject><subject>Rechargeable batteries</subject><subject>Shell stability</subject><subject>Structural stability</subject><issn>1572-6657</issn><issn>1873-2569</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFUc1q3DAQNqWFpmleIQh69kaSo5-9pSzdNiSQHtqzGMmjWq7XciU50Bfqc1Zm23NgYAbm-2Hma5prRneMMnkz7kac0A142nHK9jvKavFXzQXTqmu5kPvXdRaKt1IK9bZ5l_NIKdea8Yvmz9eECyQoIc4keuIg2Trh7GDJ6wQFe-JiwjYPOE3kiHeHeET-dEsqqwQ3YSZlSHH9MdSO5CGknzj3ULHoPbpCYO4JLMsU3NkEMoH-GWZXlWGOPZJTdUkBpkx8TGQKZQjrqd2wFsq2wvy-eeMrAK_-9cvm-_HTt8OX9vHp8_3h42PruKKlVVRarvbU-s4qUKLn3rLeOi-t6rSw0lmF1HeddMwKrZEKKkHf7oWgnWW0u2w-nHWXFH-tmIsZ45rmamk4Z1QLoRmrKHlGuRRzTujNksIJ0m_DqNkyMaP5n4nZMjGU1eKVeHcmYr3hOWAy2QXcXhFS_ZXpY3hJ4i_T8Jue</recordid><startdate>20190215</startdate><enddate>20190215</enddate><creator>Duan, Chaoyu</creator><creator>Zhu, Fuliang</creator><creator>Du, Mengqi</creator><creator>Meng, Yanshuang</creator><creator>Zhang, Yue</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0001-6737-0135</orcidid><orcidid>https://orcid.org/0000-0002-8873-1347</orcidid></search><sort><creationdate>20190215</creationdate><title>Preparation of carbon encapsulated core-shell Fe@CoFe2O4 particles through the Kirkendall effect and application as advanced anode materials for lithium-ion batteries</title><author>Duan, Chaoyu ; Zhu, Fuliang ; Du, Mengqi ; Meng, Yanshuang ; Zhang, Yue</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-706b2790bf3b7a75d2fb1dbcf6b7385b6cb7e0f336c1b588e0506a8495503b103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Anode effect</topic><topic>Carbon</topic><topic>Cobalt ferrites</topic><topic>CoFe2O4</topic><topic>Core-shell</topic><topic>Electric contacts</topic><topic>Electrical resistivity</topic><topic>Electrode materials</topic><topic>Encapsulation</topic><topic>Iron</topic><topic>Kirkendall effect</topic><topic>Lithium</topic><topic>Lithium ion batteries</topic><topic>Nanoparticles</topic><topic>Rechargeable batteries</topic><topic>Shell stability</topic><topic>Structural stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Duan, Chaoyu</creatorcontrib><creatorcontrib>Zhu, Fuliang</creatorcontrib><creatorcontrib>Du, Mengqi</creatorcontrib><creatorcontrib>Meng, Yanshuang</creatorcontrib><creatorcontrib>Zhang, Yue</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of electroanalytical chemistry (Lausanne, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Duan, Chaoyu</au><au>Zhu, Fuliang</au><au>Du, Mengqi</au><au>Meng, Yanshuang</au><au>Zhang, Yue</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Preparation of carbon encapsulated core-shell Fe@CoFe2O4 particles through the Kirkendall effect and application as advanced anode materials for lithium-ion batteries</atitle><jtitle>Journal of electroanalytical chemistry (Lausanne, Switzerland)</jtitle><date>2019-02-15</date><risdate>2019</risdate><volume>835</volume><spage>22</spage><epage>29</epage><pages>22-29</pages><issn>1572-6657</issn><eissn>1873-2569</eissn><abstract>Carbon encapsulated core-shell Fe@CoFe2O4 nanoparticles (Fe@CoFe2O4@C) are produced by using Kirkendall effect method and used as the anode material for lithium-ion batteries. During the discharge process, Fe and Co particles are synthesized at the shell of the nanoparticles and are pulverized to smaller grains in the low potential regions. These pulverized particles not only increase the contact area between electrolyte and active materials, but also shortens the transfer distance of Li+ and electron, leading to an enhanced capacity. In addition, the structure stability and electrical conductivity of CoFe2O4 (CFO) shell are improved by the thin carbon layer coated on the surface of the shell. Due to this special structure, the Fe@CoFe2O4@C electrode exhibits excellent cycle performance, delivering a capacity of 1911mAhg−1 after 500cycles at 0.3C (1C=1000mAg−1). It also shows superior rate capacities of 760.8, 735.6, 672.2, and 596.5mAhg−1 at the current densities of 1.0, 2.0, 5.0, and 10.0C, respectively.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jelechem.2019.01.012</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-6737-0135</orcidid><orcidid>https://orcid.org/0000-0002-8873-1347</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1572-6657
ispartof Journal of electroanalytical chemistry (Lausanne, Switzerland), 2019-02, Vol.835, p.22-29
issn 1572-6657
1873-2569
language eng
recordid cdi_proquest_journals_2210855811
source Elsevier ScienceDirect Journals
subjects Anode effect
Carbon
Cobalt ferrites
CoFe2O4
Core-shell
Electric contacts
Electrical resistivity
Electrode materials
Encapsulation
Iron
Kirkendall effect
Lithium
Lithium ion batteries
Nanoparticles
Rechargeable batteries
Shell stability
Structural stability
title Preparation of carbon encapsulated core-shell Fe@CoFe2O4 particles through the Kirkendall effect and application as advanced anode materials for lithium-ion batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T17%3A48%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Preparation%20of%20carbon%20encapsulated%20core-shell%20Fe@CoFe2O4%20particles%20through%20the%20Kirkendall%20effect%20and%20application%20as%20advanced%20anode%20materials%20for%20lithium-ion%20batteries&rft.jtitle=Journal%20of%20electroanalytical%20chemistry%20(Lausanne,%20Switzerland)&rft.au=Duan,%20Chaoyu&rft.date=2019-02-15&rft.volume=835&rft.spage=22&rft.epage=29&rft.pages=22-29&rft.issn=1572-6657&rft.eissn=1873-2569&rft_id=info:doi/10.1016/j.jelechem.2019.01.012&rft_dat=%3Cproquest_cross%3E2210855811%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2210855811&rft_id=info:pmid/&rft_els_id=S1572665719300207&rfr_iscdi=true