Preparation of carbon encapsulated core-shell Fe@CoFe2O4 particles through the Kirkendall effect and application as advanced anode materials for lithium-ion batteries
Carbon encapsulated core-shell Fe@CoFe2O4 nanoparticles (Fe@CoFe2O4@C) are produced by using Kirkendall effect method and used as the anode material for lithium-ion batteries. During the discharge process, Fe and Co particles are synthesized at the shell of the nanoparticles and are pulverized to sm...
Gespeichert in:
Veröffentlicht in: | Journal of electroanalytical chemistry (Lausanne, Switzerland) Switzerland), 2019-02, Vol.835, p.22-29 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 29 |
---|---|
container_issue | |
container_start_page | 22 |
container_title | Journal of electroanalytical chemistry (Lausanne, Switzerland) |
container_volume | 835 |
creator | Duan, Chaoyu Zhu, Fuliang Du, Mengqi Meng, Yanshuang Zhang, Yue |
description | Carbon encapsulated core-shell Fe@CoFe2O4 nanoparticles (Fe@CoFe2O4@C) are produced by using Kirkendall effect method and used as the anode material for lithium-ion batteries. During the discharge process, Fe and Co particles are synthesized at the shell of the nanoparticles and are pulverized to smaller grains in the low potential regions. These pulverized particles not only increase the contact area between electrolyte and active materials, but also shortens the transfer distance of Li+ and electron, leading to an enhanced capacity. In addition, the structure stability and electrical conductivity of CoFe2O4 (CFO) shell are improved by the thin carbon layer coated on the surface of the shell. Due to this special structure, the Fe@CoFe2O4@C electrode exhibits excellent cycle performance, delivering a capacity of 1911mAhg−1 after 500cycles at 0.3C (1C=1000mAg−1). It also shows superior rate capacities of 760.8, 735.6, 672.2, and 596.5mAhg−1 at the current densities of 1.0, 2.0, 5.0, and 10.0C, respectively. |
doi_str_mv | 10.1016/j.jelechem.2019.01.012 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2210855811</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1572665719300207</els_id><sourcerecordid>2210855811</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-706b2790bf3b7a75d2fb1dbcf6b7385b6cb7e0f336c1b588e0506a8495503b103</originalsourceid><addsrcrecordid>eNqFUc1q3DAQNqWFpmleIQh69kaSo5-9pSzdNiSQHtqzGMmjWq7XciU50Bfqc1Zm23NgYAbm-2Hma5prRneMMnkz7kac0A142nHK9jvKavFXzQXTqmu5kPvXdRaKt1IK9bZ5l_NIKdea8Yvmz9eECyQoIc4keuIg2Trh7GDJ6wQFe-JiwjYPOE3kiHeHeET-dEsqqwQ3YSZlSHH9MdSO5CGknzj3ULHoPbpCYO4JLMsU3NkEMoH-GWZXlWGOPZJTdUkBpkx8TGQKZQjrqd2wFsq2wvy-eeMrAK_-9cvm-_HTt8OX9vHp8_3h42PruKKlVVRarvbU-s4qUKLn3rLeOi-t6rSw0lmF1HeddMwKrZEKKkHf7oWgnWW0u2w-nHWXFH-tmIsZ45rmamk4Z1QLoRmrKHlGuRRzTujNksIJ0m_DqNkyMaP5n4nZMjGU1eKVeHcmYr3hOWAy2QXcXhFS_ZXpY3hJ4i_T8Jue</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2210855811</pqid></control><display><type>article</type><title>Preparation of carbon encapsulated core-shell Fe@CoFe2O4 particles through the Kirkendall effect and application as advanced anode materials for lithium-ion batteries</title><source>Elsevier ScienceDirect Journals</source><creator>Duan, Chaoyu ; Zhu, Fuliang ; Du, Mengqi ; Meng, Yanshuang ; Zhang, Yue</creator><creatorcontrib>Duan, Chaoyu ; Zhu, Fuliang ; Du, Mengqi ; Meng, Yanshuang ; Zhang, Yue</creatorcontrib><description>Carbon encapsulated core-shell Fe@CoFe2O4 nanoparticles (Fe@CoFe2O4@C) are produced by using Kirkendall effect method and used as the anode material for lithium-ion batteries. During the discharge process, Fe and Co particles are synthesized at the shell of the nanoparticles and are pulverized to smaller grains in the low potential regions. These pulverized particles not only increase the contact area between electrolyte and active materials, but also shortens the transfer distance of Li+ and electron, leading to an enhanced capacity. In addition, the structure stability and electrical conductivity of CoFe2O4 (CFO) shell are improved by the thin carbon layer coated on the surface of the shell. Due to this special structure, the Fe@CoFe2O4@C electrode exhibits excellent cycle performance, delivering a capacity of 1911mAhg−1 after 500cycles at 0.3C (1C=1000mAg−1). It also shows superior rate capacities of 760.8, 735.6, 672.2, and 596.5mAhg−1 at the current densities of 1.0, 2.0, 5.0, and 10.0C, respectively.</description><identifier>ISSN: 1572-6657</identifier><identifier>EISSN: 1873-2569</identifier><identifier>DOI: 10.1016/j.jelechem.2019.01.012</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Anode effect ; Carbon ; Cobalt ferrites ; CoFe2O4 ; Core-shell ; Electric contacts ; Electrical resistivity ; Electrode materials ; Encapsulation ; Iron ; Kirkendall effect ; Lithium ; Lithium ion batteries ; Nanoparticles ; Rechargeable batteries ; Shell stability ; Structural stability</subject><ispartof>Journal of electroanalytical chemistry (Lausanne, Switzerland), 2019-02, Vol.835, p.22-29</ispartof><rights>2019 Elsevier B.V.</rights><rights>Copyright Elsevier Science Ltd. Feb 15, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c270t-706b2790bf3b7a75d2fb1dbcf6b7385b6cb7e0f336c1b588e0506a8495503b103</citedby><cites>FETCH-LOGICAL-c270t-706b2790bf3b7a75d2fb1dbcf6b7385b6cb7e0f336c1b588e0506a8495503b103</cites><orcidid>0000-0001-6737-0135 ; 0000-0002-8873-1347</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1572665719300207$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Duan, Chaoyu</creatorcontrib><creatorcontrib>Zhu, Fuliang</creatorcontrib><creatorcontrib>Du, Mengqi</creatorcontrib><creatorcontrib>Meng, Yanshuang</creatorcontrib><creatorcontrib>Zhang, Yue</creatorcontrib><title>Preparation of carbon encapsulated core-shell Fe@CoFe2O4 particles through the Kirkendall effect and application as advanced anode materials for lithium-ion batteries</title><title>Journal of electroanalytical chemistry (Lausanne, Switzerland)</title><description>Carbon encapsulated core-shell Fe@CoFe2O4 nanoparticles (Fe@CoFe2O4@C) are produced by using Kirkendall effect method and used as the anode material for lithium-ion batteries. During the discharge process, Fe and Co particles are synthesized at the shell of the nanoparticles and are pulverized to smaller grains in the low potential regions. These pulverized particles not only increase the contact area between electrolyte and active materials, but also shortens the transfer distance of Li+ and electron, leading to an enhanced capacity. In addition, the structure stability and electrical conductivity of CoFe2O4 (CFO) shell are improved by the thin carbon layer coated on the surface of the shell. Due to this special structure, the Fe@CoFe2O4@C electrode exhibits excellent cycle performance, delivering a capacity of 1911mAhg−1 after 500cycles at 0.3C (1C=1000mAg−1). It also shows superior rate capacities of 760.8, 735.6, 672.2, and 596.5mAhg−1 at the current densities of 1.0, 2.0, 5.0, and 10.0C, respectively.</description><subject>Anode effect</subject><subject>Carbon</subject><subject>Cobalt ferrites</subject><subject>CoFe2O4</subject><subject>Core-shell</subject><subject>Electric contacts</subject><subject>Electrical resistivity</subject><subject>Electrode materials</subject><subject>Encapsulation</subject><subject>Iron</subject><subject>Kirkendall effect</subject><subject>Lithium</subject><subject>Lithium ion batteries</subject><subject>Nanoparticles</subject><subject>Rechargeable batteries</subject><subject>Shell stability</subject><subject>Structural stability</subject><issn>1572-6657</issn><issn>1873-2569</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFUc1q3DAQNqWFpmleIQh69kaSo5-9pSzdNiSQHtqzGMmjWq7XciU50Bfqc1Zm23NgYAbm-2Hma5prRneMMnkz7kac0A142nHK9jvKavFXzQXTqmu5kPvXdRaKt1IK9bZ5l_NIKdea8Yvmz9eECyQoIc4keuIg2Trh7GDJ6wQFe-JiwjYPOE3kiHeHeET-dEsqqwQ3YSZlSHH9MdSO5CGknzj3ULHoPbpCYO4JLMsU3NkEMoH-GWZXlWGOPZJTdUkBpkx8TGQKZQjrqd2wFsq2wvy-eeMrAK_-9cvm-_HTt8OX9vHp8_3h42PruKKlVVRarvbU-s4qUKLn3rLeOi-t6rSw0lmF1HeddMwKrZEKKkHf7oWgnWW0u2w-nHWXFH-tmIsZ45rmamk4Z1QLoRmrKHlGuRRzTujNksIJ0m_DqNkyMaP5n4nZMjGU1eKVeHcmYr3hOWAy2QXcXhFS_ZXpY3hJ4i_T8Jue</recordid><startdate>20190215</startdate><enddate>20190215</enddate><creator>Duan, Chaoyu</creator><creator>Zhu, Fuliang</creator><creator>Du, Mengqi</creator><creator>Meng, Yanshuang</creator><creator>Zhang, Yue</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0001-6737-0135</orcidid><orcidid>https://orcid.org/0000-0002-8873-1347</orcidid></search><sort><creationdate>20190215</creationdate><title>Preparation of carbon encapsulated core-shell Fe@CoFe2O4 particles through the Kirkendall effect and application as advanced anode materials for lithium-ion batteries</title><author>Duan, Chaoyu ; Zhu, Fuliang ; Du, Mengqi ; Meng, Yanshuang ; Zhang, Yue</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-706b2790bf3b7a75d2fb1dbcf6b7385b6cb7e0f336c1b588e0506a8495503b103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Anode effect</topic><topic>Carbon</topic><topic>Cobalt ferrites</topic><topic>CoFe2O4</topic><topic>Core-shell</topic><topic>Electric contacts</topic><topic>Electrical resistivity</topic><topic>Electrode materials</topic><topic>Encapsulation</topic><topic>Iron</topic><topic>Kirkendall effect</topic><topic>Lithium</topic><topic>Lithium ion batteries</topic><topic>Nanoparticles</topic><topic>Rechargeable batteries</topic><topic>Shell stability</topic><topic>Structural stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Duan, Chaoyu</creatorcontrib><creatorcontrib>Zhu, Fuliang</creatorcontrib><creatorcontrib>Du, Mengqi</creatorcontrib><creatorcontrib>Meng, Yanshuang</creatorcontrib><creatorcontrib>Zhang, Yue</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of electroanalytical chemistry (Lausanne, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Duan, Chaoyu</au><au>Zhu, Fuliang</au><au>Du, Mengqi</au><au>Meng, Yanshuang</au><au>Zhang, Yue</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Preparation of carbon encapsulated core-shell Fe@CoFe2O4 particles through the Kirkendall effect and application as advanced anode materials for lithium-ion batteries</atitle><jtitle>Journal of electroanalytical chemistry (Lausanne, Switzerland)</jtitle><date>2019-02-15</date><risdate>2019</risdate><volume>835</volume><spage>22</spage><epage>29</epage><pages>22-29</pages><issn>1572-6657</issn><eissn>1873-2569</eissn><abstract>Carbon encapsulated core-shell Fe@CoFe2O4 nanoparticles (Fe@CoFe2O4@C) are produced by using Kirkendall effect method and used as the anode material for lithium-ion batteries. During the discharge process, Fe and Co particles are synthesized at the shell of the nanoparticles and are pulverized to smaller grains in the low potential regions. These pulverized particles not only increase the contact area between electrolyte and active materials, but also shortens the transfer distance of Li+ and electron, leading to an enhanced capacity. In addition, the structure stability and electrical conductivity of CoFe2O4 (CFO) shell are improved by the thin carbon layer coated on the surface of the shell. Due to this special structure, the Fe@CoFe2O4@C electrode exhibits excellent cycle performance, delivering a capacity of 1911mAhg−1 after 500cycles at 0.3C (1C=1000mAg−1). It also shows superior rate capacities of 760.8, 735.6, 672.2, and 596.5mAhg−1 at the current densities of 1.0, 2.0, 5.0, and 10.0C, respectively.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jelechem.2019.01.012</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-6737-0135</orcidid><orcidid>https://orcid.org/0000-0002-8873-1347</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1572-6657 |
ispartof | Journal of electroanalytical chemistry (Lausanne, Switzerland), 2019-02, Vol.835, p.22-29 |
issn | 1572-6657 1873-2569 |
language | eng |
recordid | cdi_proquest_journals_2210855811 |
source | Elsevier ScienceDirect Journals |
subjects | Anode effect Carbon Cobalt ferrites CoFe2O4 Core-shell Electric contacts Electrical resistivity Electrode materials Encapsulation Iron Kirkendall effect Lithium Lithium ion batteries Nanoparticles Rechargeable batteries Shell stability Structural stability |
title | Preparation of carbon encapsulated core-shell Fe@CoFe2O4 particles through the Kirkendall effect and application as advanced anode materials for lithium-ion batteries |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T17%3A48%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Preparation%20of%20carbon%20encapsulated%20core-shell%20Fe@CoFe2O4%20particles%20through%20the%20Kirkendall%20effect%20and%20application%20as%20advanced%20anode%20materials%20for%20lithium-ion%20batteries&rft.jtitle=Journal%20of%20electroanalytical%20chemistry%20(Lausanne,%20Switzerland)&rft.au=Duan,%20Chaoyu&rft.date=2019-02-15&rft.volume=835&rft.spage=22&rft.epage=29&rft.pages=22-29&rft.issn=1572-6657&rft.eissn=1873-2569&rft_id=info:doi/10.1016/j.jelechem.2019.01.012&rft_dat=%3Cproquest_cross%3E2210855811%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2210855811&rft_id=info:pmid/&rft_els_id=S1572665719300207&rfr_iscdi=true |