Extension of Pettis integration: Pettis operators and their integrals
In this note, the authors discuss the concepts of a Pettis operator , by which they mean a weak ∗ –weakly continuous linear operator F from a dual Banach space to an L 1 -space, and of its Pettis integral , understood simply as the dual operator F ∗ of F . Applications to radial limits in weak Hardy...
Gespeichert in:
Veröffentlicht in: | Collectanea mathematica (Barcelona) 2019-08, Vol.70 (2), p.267-281 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 281 |
---|---|
container_issue | 2 |
container_start_page | 267 |
container_title | Collectanea mathematica (Barcelona) |
container_volume | 70 |
creator | Blasco, Oscar Drewnowski, Lech |
description | In this note, the authors discuss the concepts of a
Pettis operator
, by which they mean a weak
∗
–weakly continuous linear operator
F
from a dual Banach space to an
L
1
-space, and of its
Pettis integral
, understood simply as the dual operator
F
∗
of
F
. Applications to radial limits in weak Hardy spaces of vector-valued harmonic and holomorphic functions are provided. |
doi_str_mv | 10.1007/s13348-018-0225-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2210562195</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2210562195</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-c545a32055a08e55e7761fe4a4831dfa61a4285dd728f9969e433608e2ac44793</originalsourceid><addsrcrecordid>eNp1kEtLxDAUhYMoWEd_gLuC6-i9eTSpOxnqAwZ0oesQ2nTsoM2YZMD-ezPUwZWLy4HDd86FQ8glwjUCqJuInAtNAfMxJul0RAoGXFOhUR6TAgCBgpLqlJzFuAEQDFEVpGm-kxvj4MfS9-WLS2mI5TAmtw42Zff24Pmty44PsbRjV6Z3N4QD9xHPyUmfxV386oK83Tevy0e6en54Wt6taMuxSrSVQlrOQEoL2knplKqwd8IKzbHrbYVWMC27TjHd13VVO8F5lVFmWyFUzRfkau7dBv-1czGZjd-FMb80jCHIimEtM4Uz1QYfY3C92Ybh04bJIJj9WmZey-S1zH4tM-UMmzMxs-Pahb_m_0M_Y11sdQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2210562195</pqid></control><display><type>article</type><title>Extension of Pettis integration: Pettis operators and their integrals</title><source>SpringerNature Journals</source><creator>Blasco, Oscar ; Drewnowski, Lech</creator><creatorcontrib>Blasco, Oscar ; Drewnowski, Lech</creatorcontrib><description>In this note, the authors discuss the concepts of a
Pettis operator
, by which they mean a weak
∗
–weakly continuous linear operator
F
from a dual Banach space to an
L
1
-space, and of its
Pettis integral
, understood simply as the dual operator
F
∗
of
F
. Applications to radial limits in weak Hardy spaces of vector-valued harmonic and holomorphic functions are provided.</description><identifier>ISSN: 0010-0757</identifier><identifier>EISSN: 2038-4815</identifier><identifier>DOI: 10.1007/s13348-018-0225-y</identifier><language>eng</language><publisher>Milan: Springer Milan</publisher><subject>Algebra ; Analysis ; Analytic functions ; Applications of Mathematics ; Banach spaces ; Geometry ; Harmonic functions ; Integrals ; Linear operators ; Mathematics ; Mathematics and Statistics ; Operators (mathematics)</subject><ispartof>Collectanea mathematica (Barcelona), 2019-08, Vol.70 (2), p.267-281</ispartof><rights>Universitat de Barcelona 2018</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-c545a32055a08e55e7761fe4a4831dfa61a4285dd728f9969e433608e2ac44793</citedby><cites>FETCH-LOGICAL-c316t-c545a32055a08e55e7761fe4a4831dfa61a4285dd728f9969e433608e2ac44793</cites><orcidid>0000-0001-9512-0598</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13348-018-0225-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s13348-018-0225-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Blasco, Oscar</creatorcontrib><creatorcontrib>Drewnowski, Lech</creatorcontrib><title>Extension of Pettis integration: Pettis operators and their integrals</title><title>Collectanea mathematica (Barcelona)</title><addtitle>Collect. Math</addtitle><description>In this note, the authors discuss the concepts of a
Pettis operator
, by which they mean a weak
∗
–weakly continuous linear operator
F
from a dual Banach space to an
L
1
-space, and of its
Pettis integral
, understood simply as the dual operator
F
∗
of
F
. Applications to radial limits in weak Hardy spaces of vector-valued harmonic and holomorphic functions are provided.</description><subject>Algebra</subject><subject>Analysis</subject><subject>Analytic functions</subject><subject>Applications of Mathematics</subject><subject>Banach spaces</subject><subject>Geometry</subject><subject>Harmonic functions</subject><subject>Integrals</subject><subject>Linear operators</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operators (mathematics)</subject><issn>0010-0757</issn><issn>2038-4815</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLxDAUhYMoWEd_gLuC6-i9eTSpOxnqAwZ0oesQ2nTsoM2YZMD-ezPUwZWLy4HDd86FQ8glwjUCqJuInAtNAfMxJul0RAoGXFOhUR6TAgCBgpLqlJzFuAEQDFEVpGm-kxvj4MfS9-WLS2mI5TAmtw42Zff24Pmty44PsbRjV6Z3N4QD9xHPyUmfxV386oK83Tevy0e6en54Wt6taMuxSrSVQlrOQEoL2knplKqwd8IKzbHrbYVWMC27TjHd13VVO8F5lVFmWyFUzRfkau7dBv-1czGZjd-FMb80jCHIimEtM4Uz1QYfY3C92Ybh04bJIJj9WmZey-S1zH4tM-UMmzMxs-Pahb_m_0M_Y11sdQ</recordid><startdate>20190801</startdate><enddate>20190801</enddate><creator>Blasco, Oscar</creator><creator>Drewnowski, Lech</creator><general>Springer Milan</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-9512-0598</orcidid></search><sort><creationdate>20190801</creationdate><title>Extension of Pettis integration: Pettis operators and their integrals</title><author>Blasco, Oscar ; Drewnowski, Lech</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-c545a32055a08e55e7761fe4a4831dfa61a4285dd728f9969e433608e2ac44793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algebra</topic><topic>Analysis</topic><topic>Analytic functions</topic><topic>Applications of Mathematics</topic><topic>Banach spaces</topic><topic>Geometry</topic><topic>Harmonic functions</topic><topic>Integrals</topic><topic>Linear operators</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operators (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Blasco, Oscar</creatorcontrib><creatorcontrib>Drewnowski, Lech</creatorcontrib><collection>CrossRef</collection><jtitle>Collectanea mathematica (Barcelona)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Blasco, Oscar</au><au>Drewnowski, Lech</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extension of Pettis integration: Pettis operators and their integrals</atitle><jtitle>Collectanea mathematica (Barcelona)</jtitle><stitle>Collect. Math</stitle><date>2019-08-01</date><risdate>2019</risdate><volume>70</volume><issue>2</issue><spage>267</spage><epage>281</epage><pages>267-281</pages><issn>0010-0757</issn><eissn>2038-4815</eissn><abstract>In this note, the authors discuss the concepts of a
Pettis operator
, by which they mean a weak
∗
–weakly continuous linear operator
F
from a dual Banach space to an
L
1
-space, and of its
Pettis integral
, understood simply as the dual operator
F
∗
of
F
. Applications to radial limits in weak Hardy spaces of vector-valued harmonic and holomorphic functions are provided.</abstract><cop>Milan</cop><pub>Springer Milan</pub><doi>10.1007/s13348-018-0225-y</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-9512-0598</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-0757 |
ispartof | Collectanea mathematica (Barcelona), 2019-08, Vol.70 (2), p.267-281 |
issn | 0010-0757 2038-4815 |
language | eng |
recordid | cdi_proquest_journals_2210562195 |
source | SpringerNature Journals |
subjects | Algebra Analysis Analytic functions Applications of Mathematics Banach spaces Geometry Harmonic functions Integrals Linear operators Mathematics Mathematics and Statistics Operators (mathematics) |
title | Extension of Pettis integration: Pettis operators and their integrals |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T13%3A06%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extension%20of%20Pettis%20integration:%20Pettis%20operators%20and%20their%20integrals&rft.jtitle=Collectanea%20mathematica%20(Barcelona)&rft.au=Blasco,%20Oscar&rft.date=2019-08-01&rft.volume=70&rft.issue=2&rft.spage=267&rft.epage=281&rft.pages=267-281&rft.issn=0010-0757&rft.eissn=2038-4815&rft_id=info:doi/10.1007/s13348-018-0225-y&rft_dat=%3Cproquest_cross%3E2210562195%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2210562195&rft_id=info:pmid/&rfr_iscdi=true |