Extension of Pettis integration: Pettis operators and their integrals

In this note, the authors discuss the concepts of a Pettis operator , by which they mean a weak ∗ –weakly continuous linear operator F from a dual Banach space to an L 1 -space, and of its Pettis integral , understood simply as the dual operator F ∗ of F . Applications to radial limits in weak Hardy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Collectanea mathematica (Barcelona) 2019-08, Vol.70 (2), p.267-281
Hauptverfasser: Blasco, Oscar, Drewnowski, Lech
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 281
container_issue 2
container_start_page 267
container_title Collectanea mathematica (Barcelona)
container_volume 70
creator Blasco, Oscar
Drewnowski, Lech
description In this note, the authors discuss the concepts of a Pettis operator , by which they mean a weak ∗ –weakly continuous linear operator F from a dual Banach space to an L 1 -space, and of its Pettis integral , understood simply as the dual operator F ∗ of F . Applications to radial limits in weak Hardy spaces of vector-valued harmonic and holomorphic functions are provided.
doi_str_mv 10.1007/s13348-018-0225-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2210562195</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2210562195</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-c545a32055a08e55e7761fe4a4831dfa61a4285dd728f9969e433608e2ac44793</originalsourceid><addsrcrecordid>eNp1kEtLxDAUhYMoWEd_gLuC6-i9eTSpOxnqAwZ0oesQ2nTsoM2YZMD-ezPUwZWLy4HDd86FQ8glwjUCqJuInAtNAfMxJul0RAoGXFOhUR6TAgCBgpLqlJzFuAEQDFEVpGm-kxvj4MfS9-WLS2mI5TAmtw42Zff24Pmty44PsbRjV6Z3N4QD9xHPyUmfxV386oK83Tevy0e6en54Wt6taMuxSrSVQlrOQEoL2knplKqwd8IKzbHrbYVWMC27TjHd13VVO8F5lVFmWyFUzRfkau7dBv-1czGZjd-FMb80jCHIimEtM4Uz1QYfY3C92Ybh04bJIJj9WmZey-S1zH4tM-UMmzMxs-Pahb_m_0M_Y11sdQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2210562195</pqid></control><display><type>article</type><title>Extension of Pettis integration: Pettis operators and their integrals</title><source>SpringerNature Journals</source><creator>Blasco, Oscar ; Drewnowski, Lech</creator><creatorcontrib>Blasco, Oscar ; Drewnowski, Lech</creatorcontrib><description>In this note, the authors discuss the concepts of a Pettis operator , by which they mean a weak ∗ –weakly continuous linear operator F from a dual Banach space to an L 1 -space, and of its Pettis integral , understood simply as the dual operator F ∗ of F . Applications to radial limits in weak Hardy spaces of vector-valued harmonic and holomorphic functions are provided.</description><identifier>ISSN: 0010-0757</identifier><identifier>EISSN: 2038-4815</identifier><identifier>DOI: 10.1007/s13348-018-0225-y</identifier><language>eng</language><publisher>Milan: Springer Milan</publisher><subject>Algebra ; Analysis ; Analytic functions ; Applications of Mathematics ; Banach spaces ; Geometry ; Harmonic functions ; Integrals ; Linear operators ; Mathematics ; Mathematics and Statistics ; Operators (mathematics)</subject><ispartof>Collectanea mathematica (Barcelona), 2019-08, Vol.70 (2), p.267-281</ispartof><rights>Universitat de Barcelona 2018</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-c545a32055a08e55e7761fe4a4831dfa61a4285dd728f9969e433608e2ac44793</citedby><cites>FETCH-LOGICAL-c316t-c545a32055a08e55e7761fe4a4831dfa61a4285dd728f9969e433608e2ac44793</cites><orcidid>0000-0001-9512-0598</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13348-018-0225-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s13348-018-0225-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Blasco, Oscar</creatorcontrib><creatorcontrib>Drewnowski, Lech</creatorcontrib><title>Extension of Pettis integration: Pettis operators and their integrals</title><title>Collectanea mathematica (Barcelona)</title><addtitle>Collect. Math</addtitle><description>In this note, the authors discuss the concepts of a Pettis operator , by which they mean a weak ∗ –weakly continuous linear operator F from a dual Banach space to an L 1 -space, and of its Pettis integral , understood simply as the dual operator F ∗ of F . Applications to radial limits in weak Hardy spaces of vector-valued harmonic and holomorphic functions are provided.</description><subject>Algebra</subject><subject>Analysis</subject><subject>Analytic functions</subject><subject>Applications of Mathematics</subject><subject>Banach spaces</subject><subject>Geometry</subject><subject>Harmonic functions</subject><subject>Integrals</subject><subject>Linear operators</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operators (mathematics)</subject><issn>0010-0757</issn><issn>2038-4815</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLxDAUhYMoWEd_gLuC6-i9eTSpOxnqAwZ0oesQ2nTsoM2YZMD-ezPUwZWLy4HDd86FQ8glwjUCqJuInAtNAfMxJul0RAoGXFOhUR6TAgCBgpLqlJzFuAEQDFEVpGm-kxvj4MfS9-WLS2mI5TAmtw42Zff24Pmty44PsbRjV6Z3N4QD9xHPyUmfxV386oK83Tevy0e6en54Wt6taMuxSrSVQlrOQEoL2knplKqwd8IKzbHrbYVWMC27TjHd13VVO8F5lVFmWyFUzRfkau7dBv-1czGZjd-FMb80jCHIimEtM4Uz1QYfY3C92Ybh04bJIJj9WmZey-S1zH4tM-UMmzMxs-Pahb_m_0M_Y11sdQ</recordid><startdate>20190801</startdate><enddate>20190801</enddate><creator>Blasco, Oscar</creator><creator>Drewnowski, Lech</creator><general>Springer Milan</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-9512-0598</orcidid></search><sort><creationdate>20190801</creationdate><title>Extension of Pettis integration: Pettis operators and their integrals</title><author>Blasco, Oscar ; Drewnowski, Lech</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-c545a32055a08e55e7761fe4a4831dfa61a4285dd728f9969e433608e2ac44793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algebra</topic><topic>Analysis</topic><topic>Analytic functions</topic><topic>Applications of Mathematics</topic><topic>Banach spaces</topic><topic>Geometry</topic><topic>Harmonic functions</topic><topic>Integrals</topic><topic>Linear operators</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operators (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Blasco, Oscar</creatorcontrib><creatorcontrib>Drewnowski, Lech</creatorcontrib><collection>CrossRef</collection><jtitle>Collectanea mathematica (Barcelona)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Blasco, Oscar</au><au>Drewnowski, Lech</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extension of Pettis integration: Pettis operators and their integrals</atitle><jtitle>Collectanea mathematica (Barcelona)</jtitle><stitle>Collect. Math</stitle><date>2019-08-01</date><risdate>2019</risdate><volume>70</volume><issue>2</issue><spage>267</spage><epage>281</epage><pages>267-281</pages><issn>0010-0757</issn><eissn>2038-4815</eissn><abstract>In this note, the authors discuss the concepts of a Pettis operator , by which they mean a weak ∗ –weakly continuous linear operator F from a dual Banach space to an L 1 -space, and of its Pettis integral , understood simply as the dual operator F ∗ of F . Applications to radial limits in weak Hardy spaces of vector-valued harmonic and holomorphic functions are provided.</abstract><cop>Milan</cop><pub>Springer Milan</pub><doi>10.1007/s13348-018-0225-y</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-9512-0598</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0010-0757
ispartof Collectanea mathematica (Barcelona), 2019-08, Vol.70 (2), p.267-281
issn 0010-0757
2038-4815
language eng
recordid cdi_proquest_journals_2210562195
source SpringerNature Journals
subjects Algebra
Analysis
Analytic functions
Applications of Mathematics
Banach spaces
Geometry
Harmonic functions
Integrals
Linear operators
Mathematics
Mathematics and Statistics
Operators (mathematics)
title Extension of Pettis integration: Pettis operators and their integrals
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T13%3A06%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extension%20of%20Pettis%20integration:%20Pettis%20operators%20and%20their%20integrals&rft.jtitle=Collectanea%20mathematica%20(Barcelona)&rft.au=Blasco,%20Oscar&rft.date=2019-08-01&rft.volume=70&rft.issue=2&rft.spage=267&rft.epage=281&rft.pages=267-281&rft.issn=0010-0757&rft.eissn=2038-4815&rft_id=info:doi/10.1007/s13348-018-0225-y&rft_dat=%3Cproquest_cross%3E2210562195%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2210562195&rft_id=info:pmid/&rfr_iscdi=true