Effects of pressure gradient on the evolution of velocity-gradient tensor invariant dynamics on a controlled-diffusion aerofoil at
A weakly compressible flow direct numerical simulation of a controlled-diffusion aerofoil at $8^{\circ }$ geometrical angle of attack, a chord-based Reynolds number of $Re_{c}=150\,000$ and a Mach number of $M=0.25$ based on the free-stream velocity relevant to many industrial applications was condu...
Gespeichert in:
Veröffentlicht in: | Journal of fluid mechanics 2019-06, Vol.868, p.584-610 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 610 |
---|---|
container_issue | |
container_start_page | 584 |
container_title | Journal of fluid mechanics |
container_volume | 868 |
creator | Wu, H. Moreau, S. Sandberg, R. D. |
description | A weakly compressible flow direct numerical simulation of a controlled-diffusion aerofoil at
$8^{\circ }$
geometrical angle of attack, a chord-based Reynolds number of
$Re_{c}=150\,000$
and a Mach number of
$M=0.25$
based on the free-stream velocity relevant to many industrial applications was conducted to improve the understanding of the impact of the pressure gradient on the development of turbulent structures. The evolution equations for the two invariants
$Q$
and
$R$
of the velocity-gradient tensor have been studied at various locations along the aerofoil chord on its suction side. The shape of the mean evolution of the velocity-gradient tensor invariants were found to vary strongly when the flow encounters favourable, zero and adverse pressure gradients and as well for different wall-normal locations. The coupling between the pressure-Hessian tensor and the velocity-gradient tensor was found to be the major factor that causes these changes and is greatly influenced by the mean pressure-gradient condition and the wall-normal distance. Striking differences exist from the mean trajectories of this coupling at least in the log layer and outer layer subject to different mean pressure gradients. The nonlinearity and viscous diffusion effects keep their respective invariant characters regardless of the pressure-gradient effects and wall-normal locations. The wall and the mean adverse pressure gradient were both found to suppress the vortical stretching features of the flow. These features are of great importance for the development of future turbulence models on wall-bounded flows, especially on surfaces with significant curvature such as cambered aerofoils and blades for which significant mean pressure gradients exist. |
doi_str_mv | 10.1017/jfm.2019.129 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2210388312</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2210388312</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1082-b3bad069f39f5d0e8e232abcd25515c8098ec1ba9f344c7dc90f9e5ed70ebbdb3</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKs3f0DAq1snyW53c5RSP6DgRc8hm0w0ZbupSbbQq7_cXSqehhme9x14CLllsGDA6oet2y04MLlgXJ6RGSuXsqiXZXVOZgCcF4xxuCRXKW0BmABZz8jP2jk0OdHg6D5iSkNE-hm19dhnGnqav5DiIXRD9uM2UgfsgvH5WPxTGfsUIvX9QUevx4M99nrnTZrymprQ5xi6Dm1hvXNDmoo0xuCC76jO1-TC6S7hzd-ck4-n9fvqpdi8Pb-uHjeFYdDwohWttrCUTkhXWcAGueC6NZZXFatMA7JBw1o9AmVpamskOIkV2hqwbW0r5uTu1LuP4XvAlNU2DLEfXyrOGYimEYyP1P2JMjGkFNGpffQ7HY-KgZosq9Gymiyr0bL4BYF2c9I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2210388312</pqid></control><display><type>article</type><title>Effects of pressure gradient on the evolution of velocity-gradient tensor invariant dynamics on a controlled-diffusion aerofoil at</title><source>Cambridge University Press Journals Complete</source><creator>Wu, H. ; Moreau, S. ; Sandberg, R. D.</creator><creatorcontrib>Wu, H. ; Moreau, S. ; Sandberg, R. D.</creatorcontrib><description>A weakly compressible flow direct numerical simulation of a controlled-diffusion aerofoil at
$8^{\circ }$
geometrical angle of attack, a chord-based Reynolds number of
$Re_{c}=150\,000$
and a Mach number of
$M=0.25$
based on the free-stream velocity relevant to many industrial applications was conducted to improve the understanding of the impact of the pressure gradient on the development of turbulent structures. The evolution equations for the two invariants
$Q$
and
$R$
of the velocity-gradient tensor have been studied at various locations along the aerofoil chord on its suction side. The shape of the mean evolution of the velocity-gradient tensor invariants were found to vary strongly when the flow encounters favourable, zero and adverse pressure gradients and as well for different wall-normal locations. The coupling between the pressure-Hessian tensor and the velocity-gradient tensor was found to be the major factor that causes these changes and is greatly influenced by the mean pressure-gradient condition and the wall-normal distance. Striking differences exist from the mean trajectories of this coupling at least in the log layer and outer layer subject to different mean pressure gradients. The nonlinearity and viscous diffusion effects keep their respective invariant characters regardless of the pressure-gradient effects and wall-normal locations. The wall and the mean adverse pressure gradient were both found to suppress the vortical stretching features of the flow. These features are of great importance for the development of future turbulence models on wall-bounded flows, especially on surfaces with significant curvature such as cambered aerofoils and blades for which significant mean pressure gradients exist.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2019.129</identifier><language>eng</language><publisher>Cambridge: Cambridge University Press</publisher><subject>Aerodynamics ; Airfoils ; Angle of attack ; Cambering ; Compressible flow ; Computational fluid dynamics ; Computer simulation ; Coupling ; Curvature ; Diffusion ; Diffusion effects ; Diffusion layers ; Direct numerical simulation ; Dynamics ; Evolution ; Fluid flow ; Fluid mechanics ; Geographical variations ; Industrial applications ; Invariants ; Locations (working) ; Mach number ; Mathematical analysis ; Mathematical models ; Nonlinear systems ; Nonlinearity ; Pressure ; Pressure effects ; Pressure gradients ; Reynolds number ; Simulation ; Suction ; Tensors ; Turbulence ; Turbulence models ; Velocity</subject><ispartof>Journal of fluid mechanics, 2019-06, Vol.868, p.584-610</ispartof><rights>2019 Cambridge University Press</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1082-b3bad069f39f5d0e8e232abcd25515c8098ec1ba9f344c7dc90f9e5ed70ebbdb3</citedby><cites>FETCH-LOGICAL-c1082-b3bad069f39f5d0e8e232abcd25515c8098ec1ba9f344c7dc90f9e5ed70ebbdb3</cites><orcidid>0000-0002-5784-9449 ; 0000-0002-9306-8375 ; 0000-0001-5199-3944</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Wu, H.</creatorcontrib><creatorcontrib>Moreau, S.</creatorcontrib><creatorcontrib>Sandberg, R. D.</creatorcontrib><title>Effects of pressure gradient on the evolution of velocity-gradient tensor invariant dynamics on a controlled-diffusion aerofoil at</title><title>Journal of fluid mechanics</title><description>A weakly compressible flow direct numerical simulation of a controlled-diffusion aerofoil at
$8^{\circ }$
geometrical angle of attack, a chord-based Reynolds number of
$Re_{c}=150\,000$
and a Mach number of
$M=0.25$
based on the free-stream velocity relevant to many industrial applications was conducted to improve the understanding of the impact of the pressure gradient on the development of turbulent structures. The evolution equations for the two invariants
$Q$
and
$R$
of the velocity-gradient tensor have been studied at various locations along the aerofoil chord on its suction side. The shape of the mean evolution of the velocity-gradient tensor invariants were found to vary strongly when the flow encounters favourable, zero and adverse pressure gradients and as well for different wall-normal locations. The coupling between the pressure-Hessian tensor and the velocity-gradient tensor was found to be the major factor that causes these changes and is greatly influenced by the mean pressure-gradient condition and the wall-normal distance. Striking differences exist from the mean trajectories of this coupling at least in the log layer and outer layer subject to different mean pressure gradients. The nonlinearity and viscous diffusion effects keep their respective invariant characters regardless of the pressure-gradient effects and wall-normal locations. The wall and the mean adverse pressure gradient were both found to suppress the vortical stretching features of the flow. These features are of great importance for the development of future turbulence models on wall-bounded flows, especially on surfaces with significant curvature such as cambered aerofoils and blades for which significant mean pressure gradients exist.</description><subject>Aerodynamics</subject><subject>Airfoils</subject><subject>Angle of attack</subject><subject>Cambering</subject><subject>Compressible flow</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Coupling</subject><subject>Curvature</subject><subject>Diffusion</subject><subject>Diffusion effects</subject><subject>Diffusion layers</subject><subject>Direct numerical simulation</subject><subject>Dynamics</subject><subject>Evolution</subject><subject>Fluid flow</subject><subject>Fluid mechanics</subject><subject>Geographical variations</subject><subject>Industrial applications</subject><subject>Invariants</subject><subject>Locations (working)</subject><subject>Mach number</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Nonlinear systems</subject><subject>Nonlinearity</subject><subject>Pressure</subject><subject>Pressure effects</subject><subject>Pressure gradients</subject><subject>Reynolds number</subject><subject>Simulation</subject><subject>Suction</subject><subject>Tensors</subject><subject>Turbulence</subject><subject>Turbulence models</subject><subject>Velocity</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNo9kE1LAzEQhoMoWKs3f0DAq1snyW53c5RSP6DgRc8hm0w0ZbupSbbQq7_cXSqehhme9x14CLllsGDA6oet2y04MLlgXJ6RGSuXsqiXZXVOZgCcF4xxuCRXKW0BmABZz8jP2jk0OdHg6D5iSkNE-hm19dhnGnqav5DiIXRD9uM2UgfsgvH5WPxTGfsUIvX9QUevx4M99nrnTZrymprQ5xi6Dm1hvXNDmoo0xuCC76jO1-TC6S7hzd-ck4-n9fvqpdi8Pb-uHjeFYdDwohWttrCUTkhXWcAGueC6NZZXFatMA7JBw1o9AmVpamskOIkV2hqwbW0r5uTu1LuP4XvAlNU2DLEfXyrOGYimEYyP1P2JMjGkFNGpffQ7HY-KgZosq9Gymiyr0bL4BYF2c9I</recordid><startdate>20190610</startdate><enddate>20190610</enddate><creator>Wu, H.</creator><creator>Moreau, S.</creator><creator>Sandberg, R. D.</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0002-5784-9449</orcidid><orcidid>https://orcid.org/0000-0002-9306-8375</orcidid><orcidid>https://orcid.org/0000-0001-5199-3944</orcidid></search><sort><creationdate>20190610</creationdate><title>Effects of pressure gradient on the evolution of velocity-gradient tensor invariant dynamics on a controlled-diffusion aerofoil at</title><author>Wu, H. ; Moreau, S. ; Sandberg, R. D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1082-b3bad069f39f5d0e8e232abcd25515c8098ec1ba9f344c7dc90f9e5ed70ebbdb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aerodynamics</topic><topic>Airfoils</topic><topic>Angle of attack</topic><topic>Cambering</topic><topic>Compressible flow</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Coupling</topic><topic>Curvature</topic><topic>Diffusion</topic><topic>Diffusion effects</topic><topic>Diffusion layers</topic><topic>Direct numerical simulation</topic><topic>Dynamics</topic><topic>Evolution</topic><topic>Fluid flow</topic><topic>Fluid mechanics</topic><topic>Geographical variations</topic><topic>Industrial applications</topic><topic>Invariants</topic><topic>Locations (working)</topic><topic>Mach number</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Nonlinear systems</topic><topic>Nonlinearity</topic><topic>Pressure</topic><topic>Pressure effects</topic><topic>Pressure gradients</topic><topic>Reynolds number</topic><topic>Simulation</topic><topic>Suction</topic><topic>Tensors</topic><topic>Turbulence</topic><topic>Turbulence models</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, H.</creatorcontrib><creatorcontrib>Moreau, S.</creatorcontrib><creatorcontrib>Sandberg, R. D.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, H.</au><au>Moreau, S.</au><au>Sandberg, R. D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of pressure gradient on the evolution of velocity-gradient tensor invariant dynamics on a controlled-diffusion aerofoil at</atitle><jtitle>Journal of fluid mechanics</jtitle><date>2019-06-10</date><risdate>2019</risdate><volume>868</volume><spage>584</spage><epage>610</epage><pages>584-610</pages><issn>0022-1120</issn><eissn>1469-7645</eissn><abstract>A weakly compressible flow direct numerical simulation of a controlled-diffusion aerofoil at
$8^{\circ }$
geometrical angle of attack, a chord-based Reynolds number of
$Re_{c}=150\,000$
and a Mach number of
$M=0.25$
based on the free-stream velocity relevant to many industrial applications was conducted to improve the understanding of the impact of the pressure gradient on the development of turbulent structures. The evolution equations for the two invariants
$Q$
and
$R$
of the velocity-gradient tensor have been studied at various locations along the aerofoil chord on its suction side. The shape of the mean evolution of the velocity-gradient tensor invariants were found to vary strongly when the flow encounters favourable, zero and adverse pressure gradients and as well for different wall-normal locations. The coupling between the pressure-Hessian tensor and the velocity-gradient tensor was found to be the major factor that causes these changes and is greatly influenced by the mean pressure-gradient condition and the wall-normal distance. Striking differences exist from the mean trajectories of this coupling at least in the log layer and outer layer subject to different mean pressure gradients. The nonlinearity and viscous diffusion effects keep their respective invariant characters regardless of the pressure-gradient effects and wall-normal locations. The wall and the mean adverse pressure gradient were both found to suppress the vortical stretching features of the flow. These features are of great importance for the development of future turbulence models on wall-bounded flows, especially on surfaces with significant curvature such as cambered aerofoils and blades for which significant mean pressure gradients exist.</abstract><cop>Cambridge</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2019.129</doi><tpages>27</tpages><orcidid>https://orcid.org/0000-0002-5784-9449</orcidid><orcidid>https://orcid.org/0000-0002-9306-8375</orcidid><orcidid>https://orcid.org/0000-0001-5199-3944</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1120 |
ispartof | Journal of fluid mechanics, 2019-06, Vol.868, p.584-610 |
issn | 0022-1120 1469-7645 |
language | eng |
recordid | cdi_proquest_journals_2210388312 |
source | Cambridge University Press Journals Complete |
subjects | Aerodynamics Airfoils Angle of attack Cambering Compressible flow Computational fluid dynamics Computer simulation Coupling Curvature Diffusion Diffusion effects Diffusion layers Direct numerical simulation Dynamics Evolution Fluid flow Fluid mechanics Geographical variations Industrial applications Invariants Locations (working) Mach number Mathematical analysis Mathematical models Nonlinear systems Nonlinearity Pressure Pressure effects Pressure gradients Reynolds number Simulation Suction Tensors Turbulence Turbulence models Velocity |
title | Effects of pressure gradient on the evolution of velocity-gradient tensor invariant dynamics on a controlled-diffusion aerofoil at |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T18%3A51%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20pressure%20gradient%20on%20the%20evolution%20of%20velocity-gradient%20tensor%20invariant%20dynamics%20on%20a%20controlled-diffusion%20aerofoil%20at&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Wu,%20H.&rft.date=2019-06-10&rft.volume=868&rft.spage=584&rft.epage=610&rft.pages=584-610&rft.issn=0022-1120&rft.eissn=1469-7645&rft_id=info:doi/10.1017/jfm.2019.129&rft_dat=%3Cproquest_cross%3E2210388312%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2210388312&rft_id=info:pmid/&rfr_iscdi=true |