Design and experimental validation of control algorithm for vehicle hydraulic active stabilizer bar system

This paper presents a novel active roll control algorithm for vehicle hydraulic active stabilizer bar system. The mechanical structure and control scheme of hydraulic active stabilizer bar system is detailed. The anti-roll torque controller is designed with “Proportional-Integral-Differential (PID) ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Institution of Mechanical Engineers. Part D, Journal of automobile engineering Journal of automobile engineering, 2019-04, Vol.233 (5), p.1280-1295
Hauptverfasser: Dawei, Pi, Zhenxing, Kong, Xianhui, Wang, Hongliang, Wang, Shan, Chen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1295
container_issue 5
container_start_page 1280
container_title Proceedings of the Institution of Mechanical Engineers. Part D, Journal of automobile engineering
container_volume 233
creator Dawei, Pi
Zhenxing, Kong
Xianhui, Wang
Hongliang, Wang
Shan, Chen
description This paper presents a novel active roll control algorithm for vehicle hydraulic active stabilizer bar system. The mechanical structure and control scheme of hydraulic active stabilizer bar system is detailed. The anti-roll torque controller is designed with “Proportional-Integral-Differential (PID) + feedforward” algorithm to calculate the total anti-roll torque. A lateral acceleration gain and roll rate damping are added into “PID + feedforward” controller, which can improve vehicle roll dynamic response. The torque distributor is introduced based on fuzzy–PID algorithm to distribute the anti-roll torque of front and rear stabilizer bar dynamically, which can improve vehicle yaw dynamics response. The actuator controller is used for realizing the closed-loop control of the actuators displacement and generating the accurate anti-roll torque. The hardware-in-the-loop simulation platform is established based on AutoBox and active stabilizer bar actuators. The hardware-in-the-loop experiment is carried out under typical maneuvers. Experimental results show that the proposed control algorithm improves the vehicle roll and yaw dynamics response, which can enhance the vehicle roll stability, yaw stability, and ride comfort.
doi_str_mv 10.1177/0954407018770539
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2210382120</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_0954407018770539</sage_id><sourcerecordid>2210382120</sourcerecordid><originalsourceid>FETCH-LOGICAL-c309t-da6fc595a27275cce4f76e3950b4b908142f1bc4e5a98e96f24a98f6a6a98ff73</originalsourceid><addsrcrecordid>eNp1UE1LAzEQDaJgrd49BjyvJtnsZnOU-gmCFz0vs9lJm5JuapIW6693SwVBcC5v4H0M8wi55Oyac6VumK6kZIrxRilWlfqITASTvBBa82My2dPFnj8lZykt2ThKVhOyvMPk5gOFoaf4ucboVjhk8HQL3vWQXRhosNSEIcfgKfh5iC4vVtSGSLe4cMYjXez6CBvvDAWT3RZpytA5774w0g4iTbuUcXVOTiz4hBc_OCXvD_dvs6fi5fXxeXb7UpiS6Vz0UFtT6QqEEqoyBqVVNZa6Yp3sNGu4FJZ3RmIFukFdWyHHxdZQ78GqckquDrnrGD42mHK7DJs4jCdbITgrG8EFG1XsoDIxpBTRtuvxd4i7lrN232j7t9HRUhwsCeb4G_qv_hujjndS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2210382120</pqid></control><display><type>article</type><title>Design and experimental validation of control algorithm for vehicle hydraulic active stabilizer bar system</title><source>SAGE Complete</source><creator>Dawei, Pi ; Zhenxing, Kong ; Xianhui, Wang ; Hongliang, Wang ; Shan, Chen</creator><creatorcontrib>Dawei, Pi ; Zhenxing, Kong ; Xianhui, Wang ; Hongliang, Wang ; Shan, Chen</creatorcontrib><description>This paper presents a novel active roll control algorithm for vehicle hydraulic active stabilizer bar system. The mechanical structure and control scheme of hydraulic active stabilizer bar system is detailed. The anti-roll torque controller is designed with “Proportional-Integral-Differential (PID) + feedforward” algorithm to calculate the total anti-roll torque. A lateral acceleration gain and roll rate damping are added into “PID + feedforward” controller, which can improve vehicle roll dynamic response. The torque distributor is introduced based on fuzzy–PID algorithm to distribute the anti-roll torque of front and rear stabilizer bar dynamically, which can improve vehicle yaw dynamics response. The actuator controller is used for realizing the closed-loop control of the actuators displacement and generating the accurate anti-roll torque. The hardware-in-the-loop simulation platform is established based on AutoBox and active stabilizer bar actuators. The hardware-in-the-loop experiment is carried out under typical maneuvers. Experimental results show that the proposed control algorithm improves the vehicle roll and yaw dynamics response, which can enhance the vehicle roll stability, yaw stability, and ride comfort.</description><identifier>ISSN: 0954-4070</identifier><identifier>EISSN: 2041-2991</identifier><identifier>DOI: 10.1177/0954407018770539</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Acceleration ; Active control ; Actuators ; Algorithms ; Computer simulation ; Control algorithms ; Control systems design ; Control theory ; Controllers ; Damping ; Dynamic response ; Dynamic stability ; Feedforward control ; Hardware ; Hardware-in-the-loop simulation ; Hydraulics ; Lateral control ; Maneuvers ; Passenger comfort ; Proportional integral derivative ; Roll ; Rolling motion ; Torque ; Yaw</subject><ispartof>Proceedings of the Institution of Mechanical Engineers. Part D, Journal of automobile engineering, 2019-04, Vol.233 (5), p.1280-1295</ispartof><rights>IMechE 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c309t-da6fc595a27275cce4f76e3950b4b908142f1bc4e5a98e96f24a98f6a6a98ff73</citedby><cites>FETCH-LOGICAL-c309t-da6fc595a27275cce4f76e3950b4b908142f1bc4e5a98e96f24a98f6a6a98ff73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/0954407018770539$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/0954407018770539$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,780,784,21819,27924,27925,43621,43622</link.rule.ids></links><search><creatorcontrib>Dawei, Pi</creatorcontrib><creatorcontrib>Zhenxing, Kong</creatorcontrib><creatorcontrib>Xianhui, Wang</creatorcontrib><creatorcontrib>Hongliang, Wang</creatorcontrib><creatorcontrib>Shan, Chen</creatorcontrib><title>Design and experimental validation of control algorithm for vehicle hydraulic active stabilizer bar system</title><title>Proceedings of the Institution of Mechanical Engineers. Part D, Journal of automobile engineering</title><description>This paper presents a novel active roll control algorithm for vehicle hydraulic active stabilizer bar system. The mechanical structure and control scheme of hydraulic active stabilizer bar system is detailed. The anti-roll torque controller is designed with “Proportional-Integral-Differential (PID) + feedforward” algorithm to calculate the total anti-roll torque. A lateral acceleration gain and roll rate damping are added into “PID + feedforward” controller, which can improve vehicle roll dynamic response. The torque distributor is introduced based on fuzzy–PID algorithm to distribute the anti-roll torque of front and rear stabilizer bar dynamically, which can improve vehicle yaw dynamics response. The actuator controller is used for realizing the closed-loop control of the actuators displacement and generating the accurate anti-roll torque. The hardware-in-the-loop simulation platform is established based on AutoBox and active stabilizer bar actuators. The hardware-in-the-loop experiment is carried out under typical maneuvers. Experimental results show that the proposed control algorithm improves the vehicle roll and yaw dynamics response, which can enhance the vehicle roll stability, yaw stability, and ride comfort.</description><subject>Acceleration</subject><subject>Active control</subject><subject>Actuators</subject><subject>Algorithms</subject><subject>Computer simulation</subject><subject>Control algorithms</subject><subject>Control systems design</subject><subject>Control theory</subject><subject>Controllers</subject><subject>Damping</subject><subject>Dynamic response</subject><subject>Dynamic stability</subject><subject>Feedforward control</subject><subject>Hardware</subject><subject>Hardware-in-the-loop simulation</subject><subject>Hydraulics</subject><subject>Lateral control</subject><subject>Maneuvers</subject><subject>Passenger comfort</subject><subject>Proportional integral derivative</subject><subject>Roll</subject><subject>Rolling motion</subject><subject>Torque</subject><subject>Yaw</subject><issn>0954-4070</issn><issn>2041-2991</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1UE1LAzEQDaJgrd49BjyvJtnsZnOU-gmCFz0vs9lJm5JuapIW6693SwVBcC5v4H0M8wi55Oyac6VumK6kZIrxRilWlfqITASTvBBa82My2dPFnj8lZykt2ThKVhOyvMPk5gOFoaf4ucboVjhk8HQL3vWQXRhosNSEIcfgKfh5iC4vVtSGSLe4cMYjXez6CBvvDAWT3RZpytA5774w0g4iTbuUcXVOTiz4hBc_OCXvD_dvs6fi5fXxeXb7UpiS6Vz0UFtT6QqEEqoyBqVVNZa6Yp3sNGu4FJZ3RmIFukFdWyHHxdZQ78GqckquDrnrGD42mHK7DJs4jCdbITgrG8EFG1XsoDIxpBTRtuvxd4i7lrN232j7t9HRUhwsCeb4G_qv_hujjndS</recordid><startdate>201904</startdate><enddate>201904</enddate><creator>Dawei, Pi</creator><creator>Zhenxing, Kong</creator><creator>Xianhui, Wang</creator><creator>Hongliang, Wang</creator><creator>Shan, Chen</creator><general>SAGE Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>201904</creationdate><title>Design and experimental validation of control algorithm for vehicle hydraulic active stabilizer bar system</title><author>Dawei, Pi ; Zhenxing, Kong ; Xianhui, Wang ; Hongliang, Wang ; Shan, Chen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c309t-da6fc595a27275cce4f76e3950b4b908142f1bc4e5a98e96f24a98f6a6a98ff73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Acceleration</topic><topic>Active control</topic><topic>Actuators</topic><topic>Algorithms</topic><topic>Computer simulation</topic><topic>Control algorithms</topic><topic>Control systems design</topic><topic>Control theory</topic><topic>Controllers</topic><topic>Damping</topic><topic>Dynamic response</topic><topic>Dynamic stability</topic><topic>Feedforward control</topic><topic>Hardware</topic><topic>Hardware-in-the-loop simulation</topic><topic>Hydraulics</topic><topic>Lateral control</topic><topic>Maneuvers</topic><topic>Passenger comfort</topic><topic>Proportional integral derivative</topic><topic>Roll</topic><topic>Rolling motion</topic><topic>Torque</topic><topic>Yaw</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dawei, Pi</creatorcontrib><creatorcontrib>Zhenxing, Kong</creatorcontrib><creatorcontrib>Xianhui, Wang</creatorcontrib><creatorcontrib>Hongliang, Wang</creatorcontrib><creatorcontrib>Shan, Chen</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>Proceedings of the Institution of Mechanical Engineers. Part D, Journal of automobile engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dawei, Pi</au><au>Zhenxing, Kong</au><au>Xianhui, Wang</au><au>Hongliang, Wang</au><au>Shan, Chen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design and experimental validation of control algorithm for vehicle hydraulic active stabilizer bar system</atitle><jtitle>Proceedings of the Institution of Mechanical Engineers. Part D, Journal of automobile engineering</jtitle><date>2019-04</date><risdate>2019</risdate><volume>233</volume><issue>5</issue><spage>1280</spage><epage>1295</epage><pages>1280-1295</pages><issn>0954-4070</issn><eissn>2041-2991</eissn><abstract>This paper presents a novel active roll control algorithm for vehicle hydraulic active stabilizer bar system. The mechanical structure and control scheme of hydraulic active stabilizer bar system is detailed. The anti-roll torque controller is designed with “Proportional-Integral-Differential (PID) + feedforward” algorithm to calculate the total anti-roll torque. A lateral acceleration gain and roll rate damping are added into “PID + feedforward” controller, which can improve vehicle roll dynamic response. The torque distributor is introduced based on fuzzy–PID algorithm to distribute the anti-roll torque of front and rear stabilizer bar dynamically, which can improve vehicle yaw dynamics response. The actuator controller is used for realizing the closed-loop control of the actuators displacement and generating the accurate anti-roll torque. The hardware-in-the-loop simulation platform is established based on AutoBox and active stabilizer bar actuators. The hardware-in-the-loop experiment is carried out under typical maneuvers. Experimental results show that the proposed control algorithm improves the vehicle roll and yaw dynamics response, which can enhance the vehicle roll stability, yaw stability, and ride comfort.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/0954407018770539</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0954-4070
ispartof Proceedings of the Institution of Mechanical Engineers. Part D, Journal of automobile engineering, 2019-04, Vol.233 (5), p.1280-1295
issn 0954-4070
2041-2991
language eng
recordid cdi_proquest_journals_2210382120
source SAGE Complete
subjects Acceleration
Active control
Actuators
Algorithms
Computer simulation
Control algorithms
Control systems design
Control theory
Controllers
Damping
Dynamic response
Dynamic stability
Feedforward control
Hardware
Hardware-in-the-loop simulation
Hydraulics
Lateral control
Maneuvers
Passenger comfort
Proportional integral derivative
Roll
Rolling motion
Torque
Yaw
title Design and experimental validation of control algorithm for vehicle hydraulic active stabilizer bar system
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T07%3A09%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20and%20experimental%20validation%20of%20control%20algorithm%20for%20vehicle%20hydraulic%20active%20stabilizer%20bar%20system&rft.jtitle=Proceedings%20of%20the%20Institution%20of%20Mechanical%20Engineers.%20Part%20D,%20Journal%20of%20automobile%20engineering&rft.au=Dawei,%20Pi&rft.date=2019-04&rft.volume=233&rft.issue=5&rft.spage=1280&rft.epage=1295&rft.pages=1280-1295&rft.issn=0954-4070&rft.eissn=2041-2991&rft_id=info:doi/10.1177/0954407018770539&rft_dat=%3Cproquest_cross%3E2210382120%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2210382120&rft_id=info:pmid/&rft_sage_id=10.1177_0954407018770539&rfr_iscdi=true