Design and experimental validation of control algorithm for vehicle hydraulic active stabilizer bar system
This paper presents a novel active roll control algorithm for vehicle hydraulic active stabilizer bar system. The mechanical structure and control scheme of hydraulic active stabilizer bar system is detailed. The anti-roll torque controller is designed with “Proportional-Integral-Differential (PID) ...
Gespeichert in:
Veröffentlicht in: | Proceedings of the Institution of Mechanical Engineers. Part D, Journal of automobile engineering Journal of automobile engineering, 2019-04, Vol.233 (5), p.1280-1295 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1295 |
---|---|
container_issue | 5 |
container_start_page | 1280 |
container_title | Proceedings of the Institution of Mechanical Engineers. Part D, Journal of automobile engineering |
container_volume | 233 |
creator | Dawei, Pi Zhenxing, Kong Xianhui, Wang Hongliang, Wang Shan, Chen |
description | This paper presents a novel active roll control algorithm for vehicle hydraulic active stabilizer bar system. The mechanical structure and control scheme of hydraulic active stabilizer bar system is detailed. The anti-roll torque controller is designed with “Proportional-Integral-Differential (PID) + feedforward” algorithm to calculate the total anti-roll torque. A lateral acceleration gain and roll rate damping are added into “PID + feedforward” controller, which can improve vehicle roll dynamic response. The torque distributor is introduced based on fuzzy–PID algorithm to distribute the anti-roll torque of front and rear stabilizer bar dynamically, which can improve vehicle yaw dynamics response. The actuator controller is used for realizing the closed-loop control of the actuators displacement and generating the accurate anti-roll torque. The hardware-in-the-loop simulation platform is established based on AutoBox and active stabilizer bar actuators. The hardware-in-the-loop experiment is carried out under typical maneuvers. Experimental results show that the proposed control algorithm improves the vehicle roll and yaw dynamics response, which can enhance the vehicle roll stability, yaw stability, and ride comfort. |
doi_str_mv | 10.1177/0954407018770539 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2210382120</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_0954407018770539</sage_id><sourcerecordid>2210382120</sourcerecordid><originalsourceid>FETCH-LOGICAL-c309t-da6fc595a27275cce4f76e3950b4b908142f1bc4e5a98e96f24a98f6a6a98ff73</originalsourceid><addsrcrecordid>eNp1UE1LAzEQDaJgrd49BjyvJtnsZnOU-gmCFz0vs9lJm5JuapIW6693SwVBcC5v4H0M8wi55Oyac6VumK6kZIrxRilWlfqITASTvBBa82My2dPFnj8lZykt2ThKVhOyvMPk5gOFoaf4ucboVjhk8HQL3vWQXRhosNSEIcfgKfh5iC4vVtSGSLe4cMYjXez6CBvvDAWT3RZpytA5774w0g4iTbuUcXVOTiz4hBc_OCXvD_dvs6fi5fXxeXb7UpiS6Vz0UFtT6QqEEqoyBqVVNZa6Yp3sNGu4FJZ3RmIFukFdWyHHxdZQ78GqckquDrnrGD42mHK7DJs4jCdbITgrG8EFG1XsoDIxpBTRtuvxd4i7lrN232j7t9HRUhwsCeb4G_qv_hujjndS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2210382120</pqid></control><display><type>article</type><title>Design and experimental validation of control algorithm for vehicle hydraulic active stabilizer bar system</title><source>SAGE Complete</source><creator>Dawei, Pi ; Zhenxing, Kong ; Xianhui, Wang ; Hongliang, Wang ; Shan, Chen</creator><creatorcontrib>Dawei, Pi ; Zhenxing, Kong ; Xianhui, Wang ; Hongliang, Wang ; Shan, Chen</creatorcontrib><description>This paper presents a novel active roll control algorithm for vehicle hydraulic active stabilizer bar system. The mechanical structure and control scheme of hydraulic active stabilizer bar system is detailed. The anti-roll torque controller is designed with “Proportional-Integral-Differential (PID) + feedforward” algorithm to calculate the total anti-roll torque. A lateral acceleration gain and roll rate damping are added into “PID + feedforward” controller, which can improve vehicle roll dynamic response. The torque distributor is introduced based on fuzzy–PID algorithm to distribute the anti-roll torque of front and rear stabilizer bar dynamically, which can improve vehicle yaw dynamics response. The actuator controller is used for realizing the closed-loop control of the actuators displacement and generating the accurate anti-roll torque. The hardware-in-the-loop simulation platform is established based on AutoBox and active stabilizer bar actuators. The hardware-in-the-loop experiment is carried out under typical maneuvers. Experimental results show that the proposed control algorithm improves the vehicle roll and yaw dynamics response, which can enhance the vehicle roll stability, yaw stability, and ride comfort.</description><identifier>ISSN: 0954-4070</identifier><identifier>EISSN: 2041-2991</identifier><identifier>DOI: 10.1177/0954407018770539</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Acceleration ; Active control ; Actuators ; Algorithms ; Computer simulation ; Control algorithms ; Control systems design ; Control theory ; Controllers ; Damping ; Dynamic response ; Dynamic stability ; Feedforward control ; Hardware ; Hardware-in-the-loop simulation ; Hydraulics ; Lateral control ; Maneuvers ; Passenger comfort ; Proportional integral derivative ; Roll ; Rolling motion ; Torque ; Yaw</subject><ispartof>Proceedings of the Institution of Mechanical Engineers. Part D, Journal of automobile engineering, 2019-04, Vol.233 (5), p.1280-1295</ispartof><rights>IMechE 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c309t-da6fc595a27275cce4f76e3950b4b908142f1bc4e5a98e96f24a98f6a6a98ff73</citedby><cites>FETCH-LOGICAL-c309t-da6fc595a27275cce4f76e3950b4b908142f1bc4e5a98e96f24a98f6a6a98ff73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/0954407018770539$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/0954407018770539$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,780,784,21819,27924,27925,43621,43622</link.rule.ids></links><search><creatorcontrib>Dawei, Pi</creatorcontrib><creatorcontrib>Zhenxing, Kong</creatorcontrib><creatorcontrib>Xianhui, Wang</creatorcontrib><creatorcontrib>Hongliang, Wang</creatorcontrib><creatorcontrib>Shan, Chen</creatorcontrib><title>Design and experimental validation of control algorithm for vehicle hydraulic active stabilizer bar system</title><title>Proceedings of the Institution of Mechanical Engineers. Part D, Journal of automobile engineering</title><description>This paper presents a novel active roll control algorithm for vehicle hydraulic active stabilizer bar system. The mechanical structure and control scheme of hydraulic active stabilizer bar system is detailed. The anti-roll torque controller is designed with “Proportional-Integral-Differential (PID) + feedforward” algorithm to calculate the total anti-roll torque. A lateral acceleration gain and roll rate damping are added into “PID + feedforward” controller, which can improve vehicle roll dynamic response. The torque distributor is introduced based on fuzzy–PID algorithm to distribute the anti-roll torque of front and rear stabilizer bar dynamically, which can improve vehicle yaw dynamics response. The actuator controller is used for realizing the closed-loop control of the actuators displacement and generating the accurate anti-roll torque. The hardware-in-the-loop simulation platform is established based on AutoBox and active stabilizer bar actuators. The hardware-in-the-loop experiment is carried out under typical maneuvers. Experimental results show that the proposed control algorithm improves the vehicle roll and yaw dynamics response, which can enhance the vehicle roll stability, yaw stability, and ride comfort.</description><subject>Acceleration</subject><subject>Active control</subject><subject>Actuators</subject><subject>Algorithms</subject><subject>Computer simulation</subject><subject>Control algorithms</subject><subject>Control systems design</subject><subject>Control theory</subject><subject>Controllers</subject><subject>Damping</subject><subject>Dynamic response</subject><subject>Dynamic stability</subject><subject>Feedforward control</subject><subject>Hardware</subject><subject>Hardware-in-the-loop simulation</subject><subject>Hydraulics</subject><subject>Lateral control</subject><subject>Maneuvers</subject><subject>Passenger comfort</subject><subject>Proportional integral derivative</subject><subject>Roll</subject><subject>Rolling motion</subject><subject>Torque</subject><subject>Yaw</subject><issn>0954-4070</issn><issn>2041-2991</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1UE1LAzEQDaJgrd49BjyvJtnsZnOU-gmCFz0vs9lJm5JuapIW6693SwVBcC5v4H0M8wi55Oyac6VumK6kZIrxRilWlfqITASTvBBa82My2dPFnj8lZykt2ThKVhOyvMPk5gOFoaf4ucboVjhk8HQL3vWQXRhosNSEIcfgKfh5iC4vVtSGSLe4cMYjXez6CBvvDAWT3RZpytA5774w0g4iTbuUcXVOTiz4hBc_OCXvD_dvs6fi5fXxeXb7UpiS6Vz0UFtT6QqEEqoyBqVVNZa6Yp3sNGu4FJZ3RmIFukFdWyHHxdZQ78GqckquDrnrGD42mHK7DJs4jCdbITgrG8EFG1XsoDIxpBTRtuvxd4i7lrN232j7t9HRUhwsCeb4G_qv_hujjndS</recordid><startdate>201904</startdate><enddate>201904</enddate><creator>Dawei, Pi</creator><creator>Zhenxing, Kong</creator><creator>Xianhui, Wang</creator><creator>Hongliang, Wang</creator><creator>Shan, Chen</creator><general>SAGE Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>201904</creationdate><title>Design and experimental validation of control algorithm for vehicle hydraulic active stabilizer bar system</title><author>Dawei, Pi ; Zhenxing, Kong ; Xianhui, Wang ; Hongliang, Wang ; Shan, Chen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c309t-da6fc595a27275cce4f76e3950b4b908142f1bc4e5a98e96f24a98f6a6a98ff73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Acceleration</topic><topic>Active control</topic><topic>Actuators</topic><topic>Algorithms</topic><topic>Computer simulation</topic><topic>Control algorithms</topic><topic>Control systems design</topic><topic>Control theory</topic><topic>Controllers</topic><topic>Damping</topic><topic>Dynamic response</topic><topic>Dynamic stability</topic><topic>Feedforward control</topic><topic>Hardware</topic><topic>Hardware-in-the-loop simulation</topic><topic>Hydraulics</topic><topic>Lateral control</topic><topic>Maneuvers</topic><topic>Passenger comfort</topic><topic>Proportional integral derivative</topic><topic>Roll</topic><topic>Rolling motion</topic><topic>Torque</topic><topic>Yaw</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dawei, Pi</creatorcontrib><creatorcontrib>Zhenxing, Kong</creatorcontrib><creatorcontrib>Xianhui, Wang</creatorcontrib><creatorcontrib>Hongliang, Wang</creatorcontrib><creatorcontrib>Shan, Chen</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>Proceedings of the Institution of Mechanical Engineers. Part D, Journal of automobile engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dawei, Pi</au><au>Zhenxing, Kong</au><au>Xianhui, Wang</au><au>Hongliang, Wang</au><au>Shan, Chen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design and experimental validation of control algorithm for vehicle hydraulic active stabilizer bar system</atitle><jtitle>Proceedings of the Institution of Mechanical Engineers. Part D, Journal of automobile engineering</jtitle><date>2019-04</date><risdate>2019</risdate><volume>233</volume><issue>5</issue><spage>1280</spage><epage>1295</epage><pages>1280-1295</pages><issn>0954-4070</issn><eissn>2041-2991</eissn><abstract>This paper presents a novel active roll control algorithm for vehicle hydraulic active stabilizer bar system. The mechanical structure and control scheme of hydraulic active stabilizer bar system is detailed. The anti-roll torque controller is designed with “Proportional-Integral-Differential (PID) + feedforward” algorithm to calculate the total anti-roll torque. A lateral acceleration gain and roll rate damping are added into “PID + feedforward” controller, which can improve vehicle roll dynamic response. The torque distributor is introduced based on fuzzy–PID algorithm to distribute the anti-roll torque of front and rear stabilizer bar dynamically, which can improve vehicle yaw dynamics response. The actuator controller is used for realizing the closed-loop control of the actuators displacement and generating the accurate anti-roll torque. The hardware-in-the-loop simulation platform is established based on AutoBox and active stabilizer bar actuators. The hardware-in-the-loop experiment is carried out under typical maneuvers. Experimental results show that the proposed control algorithm improves the vehicle roll and yaw dynamics response, which can enhance the vehicle roll stability, yaw stability, and ride comfort.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/0954407018770539</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0954-4070 |
ispartof | Proceedings of the Institution of Mechanical Engineers. Part D, Journal of automobile engineering, 2019-04, Vol.233 (5), p.1280-1295 |
issn | 0954-4070 2041-2991 |
language | eng |
recordid | cdi_proquest_journals_2210382120 |
source | SAGE Complete |
subjects | Acceleration Active control Actuators Algorithms Computer simulation Control algorithms Control systems design Control theory Controllers Damping Dynamic response Dynamic stability Feedforward control Hardware Hardware-in-the-loop simulation Hydraulics Lateral control Maneuvers Passenger comfort Proportional integral derivative Roll Rolling motion Torque Yaw |
title | Design and experimental validation of control algorithm for vehicle hydraulic active stabilizer bar system |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T07%3A09%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20and%20experimental%20validation%20of%20control%20algorithm%20for%20vehicle%20hydraulic%20active%20stabilizer%20bar%20system&rft.jtitle=Proceedings%20of%20the%20Institution%20of%20Mechanical%20Engineers.%20Part%20D,%20Journal%20of%20automobile%20engineering&rft.au=Dawei,%20Pi&rft.date=2019-04&rft.volume=233&rft.issue=5&rft.spage=1280&rft.epage=1295&rft.pages=1280-1295&rft.issn=0954-4070&rft.eissn=2041-2991&rft_id=info:doi/10.1177/0954407018770539&rft_dat=%3Cproquest_cross%3E2210382120%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2210382120&rft_id=info:pmid/&rft_sage_id=10.1177_0954407018770539&rfr_iscdi=true |