A toll-like receptor 9 agonist sensitizes mice to mitochondrial dysfunction-induced hepatic apoptosis via the Fas/FasL pathway

Early hepatocyte death occurs in most liver injury cases and triggers liver inflammation, which in combination with other risk factors leads to the development of liver disease. However, the pathogenesis of early phase hepatocyte death remains poorly understood. Here, C57BL/6J mice were treated with...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Archives of toxicology 2019-06, Vol.93 (6), p.1573-1584
Hauptverfasser: Song, Binbin, Aoki, Shigeki, Liu, Cong, Ito, Kousei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Early hepatocyte death occurs in most liver injury cases and triggers liver inflammation, which in combination with other risk factors leads to the development of liver disease. However, the pathogenesis of early phase hepatocyte death remains poorly understood. Here, C57BL/6J mice were treated with the hepatotoxic drug flucloxacillin (FLUX) and the toll-like receptor 9 agonist CpG oligodeoxynucleotide (ODN) to reproduce the early phase of drug-induced hepatotoxicity and investigate its pathogenesis. C57BL/6J mice were treated with FLUX (100 mg/kg, gavage) alone or in combination with ODN (40 μg/mouse, intraperitoneally). Plasma alanine aminotransferase (ALT) level was measured as a marker of hepatotoxicity. FLUX or ODN alone was insufficient to induce ALT elevation, whereas combination treatment with FLUX and ODN increased ALT levels 24 h after FLUX treatment and upregulated Fas ligand in natural killer T (NKT) cells and Fas in hepatocytes. FLUX induced mitochondrial permeability transition (MPT), and pretreatment with ODN sensitized mitochondria to FLUX-induced MPT. The increase in ALT levels induced by ODN and FLUX co-treatment was suppressed in Fas ligand ( gld/gld )-deficient mice and in mice deficient in a component of MPT pore opening (cyclophilin D-knockout mice). These results suggested that ODN activated the Fas/Fas ligand-mediated pathway in NKT cells and hepatocytes, which may predispose to FLUX-induced mitochondrial dysfunction and lead to early phase hepatocyte apoptosis. Taken together, these findings elucidate a potentially novel mechanism underlying drug-induced early phase hepatocyte death related to the Fas/Fas ligand death receptor pathway and mitochondrial dysfunction.
ISSN:0340-5761
1432-0738
DOI:10.1007/s00204-019-02454-1