Trapezoids and Deltoids in Wide Planar Point Sets
We call a set of n points in the Euclidean plane “wide” if at most n of its points are collinear. We show that in such sets, the maximum possible number of trapezoids is Ω ( n 3 log n ) and O ( n 3 log 2 n ) while for deltoids we have Ω ( n 5 / 2 ) and O ( n 8 / 3 log n ) .
Gespeichert in:
Veröffentlicht in: | Graphs and combinatorics 2019-05, Vol.35 (3), p.569-578 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 578 |
---|---|
container_issue | 3 |
container_start_page | 569 |
container_title | Graphs and combinatorics |
container_volume | 35 |
creator | Elekes, Gy |
description | We call a set of
n
points in the Euclidean plane “wide” if at most
n
of its points are collinear. We show that in such sets, the maximum possible number of trapezoids is
Ω
(
n
3
log
n
)
and
O
(
n
3
log
2
n
)
while for deltoids we have
Ω
(
n
5
/
2
)
and
O
(
n
8
/
3
log
n
)
. |
doi_str_mv | 10.1007/s00373-019-02009-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2210053590</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2210053590</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-7118c1f9639aa5a0336bbc9cf73a393f56cb79c10ddc94fcb980bff1d596892b3</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouK5-AU8Fz9GZpGk7R1n_woILrngMaZpIl7WtSfegn964Fbx5GoZ57w3vx9g5wiUClFcRQJaSAxIHAUBcHLAZ5lJxRZgfshkQYjojHbOTGDcAoDCHGcN1MIP76tsmZqZrshu3HfdL22WvbeOy1dZ0JmSrvu3G7NmN8ZQdebON7ux3ztnL3e168cCXT_ePi-sltxLzkZeIlUVPhSRjlAEpi7q2ZH0pjSTpVWHrkixC01jKva2pgtp7bBQVFYlaztnFlDuE_mPn4qg3_S506aUWIpVWUhEklZhUNvQxBuf1ENp3Ez41gv5Boyc0OqHRezRaJJOcTDGJuzcX_qL_cX0Du_tk2A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2210053590</pqid></control><display><type>article</type><title>Trapezoids and Deltoids in Wide Planar Point Sets</title><source>Springer journals</source><creator>Elekes, Gy</creator><creatorcontrib>Elekes, Gy</creatorcontrib><description>We call a set of
n
points in the Euclidean plane “wide” if at most
n
of its points are collinear. We show that in such sets, the maximum possible number of trapezoids is
Ω
(
n
3
log
n
)
and
O
(
n
3
log
2
n
)
while for deltoids we have
Ω
(
n
5
/
2
)
and
O
(
n
8
/
3
log
n
)
.</description><identifier>ISSN: 0911-0119</identifier><identifier>EISSN: 1435-5914</identifier><identifier>DOI: 10.1007/s00373-019-02009-2</identifier><language>eng</language><publisher>Tokyo: Springer Japan</publisher><subject>Combinatorics ; Engineering Design ; Euclidean geometry ; Mathematics ; Mathematics and Statistics ; Original Paper ; Trapezoids</subject><ispartof>Graphs and combinatorics, 2019-05, Vol.35 (3), p.569-578</ispartof><rights>The Author(s) 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c314t-7118c1f9639aa5a0336bbc9cf73a393f56cb79c10ddc94fcb980bff1d596892b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00373-019-02009-2$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00373-019-02009-2$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Elekes, Gy</creatorcontrib><title>Trapezoids and Deltoids in Wide Planar Point Sets</title><title>Graphs and combinatorics</title><addtitle>Graphs and Combinatorics</addtitle><description>We call a set of
n
points in the Euclidean plane “wide” if at most
n
of its points are collinear. We show that in such sets, the maximum possible number of trapezoids is
Ω
(
n
3
log
n
)
and
O
(
n
3
log
2
n
)
while for deltoids we have
Ω
(
n
5
/
2
)
and
O
(
n
8
/
3
log
n
)
.</description><subject>Combinatorics</subject><subject>Engineering Design</subject><subject>Euclidean geometry</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Original Paper</subject><subject>Trapezoids</subject><issn>0911-0119</issn><issn>1435-5914</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kE9LxDAQxYMouK5-AU8Fz9GZpGk7R1n_woILrngMaZpIl7WtSfegn964Fbx5GoZ57w3vx9g5wiUClFcRQJaSAxIHAUBcHLAZ5lJxRZgfshkQYjojHbOTGDcAoDCHGcN1MIP76tsmZqZrshu3HfdL22WvbeOy1dZ0JmSrvu3G7NmN8ZQdebON7ux3ztnL3e168cCXT_ePi-sltxLzkZeIlUVPhSRjlAEpi7q2ZH0pjSTpVWHrkixC01jKva2pgtp7bBQVFYlaztnFlDuE_mPn4qg3_S506aUWIpVWUhEklZhUNvQxBuf1ENp3Ez41gv5Boyc0OqHRezRaJJOcTDGJuzcX_qL_cX0Du_tk2A</recordid><startdate>20190501</startdate><enddate>20190501</enddate><creator>Elekes, Gy</creator><general>Springer Japan</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20190501</creationdate><title>Trapezoids and Deltoids in Wide Planar Point Sets</title><author>Elekes, Gy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-7118c1f9639aa5a0336bbc9cf73a393f56cb79c10ddc94fcb980bff1d596892b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Combinatorics</topic><topic>Engineering Design</topic><topic>Euclidean geometry</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Original Paper</topic><topic>Trapezoids</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Elekes, Gy</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Graphs and combinatorics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Elekes, Gy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Trapezoids and Deltoids in Wide Planar Point Sets</atitle><jtitle>Graphs and combinatorics</jtitle><stitle>Graphs and Combinatorics</stitle><date>2019-05-01</date><risdate>2019</risdate><volume>35</volume><issue>3</issue><spage>569</spage><epage>578</epage><pages>569-578</pages><issn>0911-0119</issn><eissn>1435-5914</eissn><abstract>We call a set of
n
points in the Euclidean plane “wide” if at most
n
of its points are collinear. We show that in such sets, the maximum possible number of trapezoids is
Ω
(
n
3
log
n
)
and
O
(
n
3
log
2
n
)
while for deltoids we have
Ω
(
n
5
/
2
)
and
O
(
n
8
/
3
log
n
)
.</abstract><cop>Tokyo</cop><pub>Springer Japan</pub><doi>10.1007/s00373-019-02009-2</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0911-0119 |
ispartof | Graphs and combinatorics, 2019-05, Vol.35 (3), p.569-578 |
issn | 0911-0119 1435-5914 |
language | eng |
recordid | cdi_proquest_journals_2210053590 |
source | Springer journals |
subjects | Combinatorics Engineering Design Euclidean geometry Mathematics Mathematics and Statistics Original Paper Trapezoids |
title | Trapezoids and Deltoids in Wide Planar Point Sets |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A45%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Trapezoids%20and%20Deltoids%20in%20Wide%20Planar%20Point%20Sets&rft.jtitle=Graphs%20and%20combinatorics&rft.au=Elekes,%20Gy&rft.date=2019-05-01&rft.volume=35&rft.issue=3&rft.spage=569&rft.epage=578&rft.pages=569-578&rft.issn=0911-0119&rft.eissn=1435-5914&rft_id=info:doi/10.1007/s00373-019-02009-2&rft_dat=%3Cproquest_cross%3E2210053590%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2210053590&rft_id=info:pmid/&rfr_iscdi=true |