Signatures of multiple jumps in surface diffusion on honeycomb surfaces
The jump distribution, a property of the motion of adsorbates on a corrugated surface, contains crucial information on adsorbate-substrate energy dissipation processes. To provide a means to study jump distributions in a honeycomb array of adsorption sites, we derive analytical expressions for the i...
Gespeichert in:
Veröffentlicht in: | Physical review. B 2019-03, Vol.99 (11), Article 115419 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 11 |
container_start_page | |
container_title | Physical review. B |
container_volume | 99 |
creator | Townsend, Peter S. M. Avidor, Nadav |
description | The jump distribution, a property of the motion of adsorbates on a corrugated surface, contains crucial information on adsorbate-substrate energy dissipation processes. To provide a means to study jump distributions in a honeycomb array of adsorption sites, we derive analytical expressions for the intermediate scattering function (ISF) describing jump diffusion taking into account jumps up to fourth-nearest neighbor in length. To enable testing the analytical expressions against experimental or simulated data, we develop a global fitting routine that can be applied to experimental or simulated ISFs to infer multiple jumps. We demonstrate the analysis method by studying the jump distribution arising from classical Langevin molecular dynamics simulations of two model systems, cyclopentadienyl (Cp) on Cu(111), and deuterium (D) on Pd(111). The simulations and analysis confirm that diffusion of Cp/Cu(111) at a surface temperature T s = 135 K takes place in a regime of predominantly single jumps. Classical simulations of D/Pd(111) at T s = 350 K, with a realistic Langevin friction, suggest that the diffusion of D/Pd(111) involves a high proportion of multiple jumps. The parameters that apply to D/Pd(111) are typical of the interaction of hydrogen atoms with close-packed transition metal surfaces, suggesting that long jumps are a general feature of the high temperature surface diffusion of hydrogen. |
doi_str_mv | 10.1103/PhysRevB.99.115419 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2209978574</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2209978574</sourcerecordid><originalsourceid>FETCH-LOGICAL-c275t-579b31b2f8b51800c262a0a1529acdc22a7a85d6787ea001e7cb9e4908a3dd343</originalsourceid><addsrcrecordid>eNo9kG9LwzAQxoMoOOa-gK8Kvu68pE3Te6lDpzBQ_PM6pGniOtamJo2wb29HnXDwHHcP9xw_Qq4pLCmF7PZ1ewhv5ud-iTgOeE7xjMxYXmCKWOD5f8_hkixC2AEALQAF4Iys35uvTg3Rm5A4m7RxPzT93iS72PYhabokRG-VNkndWBtD47pkrK3rzEG7tjqtwxW5sGofzOJP5-Tz8eFj9ZRuXtbPq7tNqpngQ8oFVhmtmC0rTksAzQqmQFHOUOlaM6aEKnldiFIYNb5phK7Q5Ailyuo6y7M5uZnu9t59RxMGuXPRd2OkZAwQRcnF0cUml_YuBG-s7H3TKn-QFOSRmTwxk4hyYpb9As74YSs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2209978574</pqid></control><display><type>article</type><title>Signatures of multiple jumps in surface diffusion on honeycomb surfaces</title><source>American Physical Society Journals</source><creator>Townsend, Peter S. M. ; Avidor, Nadav</creator><creatorcontrib>Townsend, Peter S. M. ; Avidor, Nadav</creatorcontrib><description>The jump distribution, a property of the motion of adsorbates on a corrugated surface, contains crucial information on adsorbate-substrate energy dissipation processes. To provide a means to study jump distributions in a honeycomb array of adsorption sites, we derive analytical expressions for the intermediate scattering function (ISF) describing jump diffusion taking into account jumps up to fourth-nearest neighbor in length. To enable testing the analytical expressions against experimental or simulated data, we develop a global fitting routine that can be applied to experimental or simulated ISFs to infer multiple jumps. We demonstrate the analysis method by studying the jump distribution arising from classical Langevin molecular dynamics simulations of two model systems, cyclopentadienyl (Cp) on Cu(111), and deuterium (D) on Pd(111). The simulations and analysis confirm that diffusion of Cp/Cu(111) at a surface temperature T s = 135 K takes place in a regime of predominantly single jumps. Classical simulations of D/Pd(111) at T s = 350 K, with a realistic Langevin friction, suggest that the diffusion of D/Pd(111) involves a high proportion of multiple jumps. The parameters that apply to D/Pd(111) are typical of the interaction of hydrogen atoms with close-packed transition metal surfaces, suggesting that long jumps are a general feature of the high temperature surface diffusion of hydrogen.</description><identifier>ISSN: 2469-9950</identifier><identifier>EISSN: 2469-9969</identifier><identifier>DOI: 10.1103/PhysRevB.99.115419</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Adsorbates ; Computer simulation ; Deuterium ; Diffusion ; Energy dissipation ; Exact solutions ; High temperature ; Honeycomb construction ; Hydrogen atoms ; Metal surfaces ; Molecular dynamics ; Palladium ; Scattering functions ; Simulation ; Substrates ; Surface diffusion ; Transition metals</subject><ispartof>Physical review. B, 2019-03, Vol.99 (11), Article 115419</ispartof><rights>Copyright American Physical Society Mar 15, 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c275t-579b31b2f8b51800c262a0a1529acdc22a7a85d6787ea001e7cb9e4908a3dd343</citedby><cites>FETCH-LOGICAL-c275t-579b31b2f8b51800c262a0a1529acdc22a7a85d6787ea001e7cb9e4908a3dd343</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,2877,2878,27929,27930</link.rule.ids></links><search><creatorcontrib>Townsend, Peter S. M.</creatorcontrib><creatorcontrib>Avidor, Nadav</creatorcontrib><title>Signatures of multiple jumps in surface diffusion on honeycomb surfaces</title><title>Physical review. B</title><description>The jump distribution, a property of the motion of adsorbates on a corrugated surface, contains crucial information on adsorbate-substrate energy dissipation processes. To provide a means to study jump distributions in a honeycomb array of adsorption sites, we derive analytical expressions for the intermediate scattering function (ISF) describing jump diffusion taking into account jumps up to fourth-nearest neighbor in length. To enable testing the analytical expressions against experimental or simulated data, we develop a global fitting routine that can be applied to experimental or simulated ISFs to infer multiple jumps. We demonstrate the analysis method by studying the jump distribution arising from classical Langevin molecular dynamics simulations of two model systems, cyclopentadienyl (Cp) on Cu(111), and deuterium (D) on Pd(111). The simulations and analysis confirm that diffusion of Cp/Cu(111) at a surface temperature T s = 135 K takes place in a regime of predominantly single jumps. Classical simulations of D/Pd(111) at T s = 350 K, with a realistic Langevin friction, suggest that the diffusion of D/Pd(111) involves a high proportion of multiple jumps. The parameters that apply to D/Pd(111) are typical of the interaction of hydrogen atoms with close-packed transition metal surfaces, suggesting that long jumps are a general feature of the high temperature surface diffusion of hydrogen.</description><subject>Adsorbates</subject><subject>Computer simulation</subject><subject>Deuterium</subject><subject>Diffusion</subject><subject>Energy dissipation</subject><subject>Exact solutions</subject><subject>High temperature</subject><subject>Honeycomb construction</subject><subject>Hydrogen atoms</subject><subject>Metal surfaces</subject><subject>Molecular dynamics</subject><subject>Palladium</subject><subject>Scattering functions</subject><subject>Simulation</subject><subject>Substrates</subject><subject>Surface diffusion</subject><subject>Transition metals</subject><issn>2469-9950</issn><issn>2469-9969</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9kG9LwzAQxoMoOOa-gK8Kvu68pE3Te6lDpzBQ_PM6pGniOtamJo2wb29HnXDwHHcP9xw_Qq4pLCmF7PZ1ewhv5ud-iTgOeE7xjMxYXmCKWOD5f8_hkixC2AEALQAF4Iys35uvTg3Rm5A4m7RxPzT93iS72PYhabokRG-VNkndWBtD47pkrK3rzEG7tjqtwxW5sGofzOJP5-Tz8eFj9ZRuXtbPq7tNqpngQ8oFVhmtmC0rTksAzQqmQFHOUOlaM6aEKnldiFIYNb5phK7Q5Ailyuo6y7M5uZnu9t59RxMGuXPRd2OkZAwQRcnF0cUml_YuBG-s7H3TKn-QFOSRmTwxk4hyYpb9As74YSs</recordid><startdate>20190313</startdate><enddate>20190313</enddate><creator>Townsend, Peter S. M.</creator><creator>Avidor, Nadav</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20190313</creationdate><title>Signatures of multiple jumps in surface diffusion on honeycomb surfaces</title><author>Townsend, Peter S. M. ; Avidor, Nadav</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c275t-579b31b2f8b51800c262a0a1529acdc22a7a85d6787ea001e7cb9e4908a3dd343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adsorbates</topic><topic>Computer simulation</topic><topic>Deuterium</topic><topic>Diffusion</topic><topic>Energy dissipation</topic><topic>Exact solutions</topic><topic>High temperature</topic><topic>Honeycomb construction</topic><topic>Hydrogen atoms</topic><topic>Metal surfaces</topic><topic>Molecular dynamics</topic><topic>Palladium</topic><topic>Scattering functions</topic><topic>Simulation</topic><topic>Substrates</topic><topic>Surface diffusion</topic><topic>Transition metals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Townsend, Peter S. M.</creatorcontrib><creatorcontrib>Avidor, Nadav</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Townsend, Peter S. M.</au><au>Avidor, Nadav</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Signatures of multiple jumps in surface diffusion on honeycomb surfaces</atitle><jtitle>Physical review. B</jtitle><date>2019-03-13</date><risdate>2019</risdate><volume>99</volume><issue>11</issue><artnum>115419</artnum><issn>2469-9950</issn><eissn>2469-9969</eissn><abstract>The jump distribution, a property of the motion of adsorbates on a corrugated surface, contains crucial information on adsorbate-substrate energy dissipation processes. To provide a means to study jump distributions in a honeycomb array of adsorption sites, we derive analytical expressions for the intermediate scattering function (ISF) describing jump diffusion taking into account jumps up to fourth-nearest neighbor in length. To enable testing the analytical expressions against experimental or simulated data, we develop a global fitting routine that can be applied to experimental or simulated ISFs to infer multiple jumps. We demonstrate the analysis method by studying the jump distribution arising from classical Langevin molecular dynamics simulations of two model systems, cyclopentadienyl (Cp) on Cu(111), and deuterium (D) on Pd(111). The simulations and analysis confirm that diffusion of Cp/Cu(111) at a surface temperature T s = 135 K takes place in a regime of predominantly single jumps. Classical simulations of D/Pd(111) at T s = 350 K, with a realistic Langevin friction, suggest that the diffusion of D/Pd(111) involves a high proportion of multiple jumps. The parameters that apply to D/Pd(111) are typical of the interaction of hydrogen atoms with close-packed transition metal surfaces, suggesting that long jumps are a general feature of the high temperature surface diffusion of hydrogen.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevB.99.115419</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2469-9950 |
ispartof | Physical review. B, 2019-03, Vol.99 (11), Article 115419 |
issn | 2469-9950 2469-9969 |
language | eng |
recordid | cdi_proquest_journals_2209978574 |
source | American Physical Society Journals |
subjects | Adsorbates Computer simulation Deuterium Diffusion Energy dissipation Exact solutions High temperature Honeycomb construction Hydrogen atoms Metal surfaces Molecular dynamics Palladium Scattering functions Simulation Substrates Surface diffusion Transition metals |
title | Signatures of multiple jumps in surface diffusion on honeycomb surfaces |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T15%3A11%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Signatures%20of%20multiple%20jumps%20in%20surface%20diffusion%20on%20honeycomb%20surfaces&rft.jtitle=Physical%20review.%20B&rft.au=Townsend,%20Peter%20S.%20M.&rft.date=2019-03-13&rft.volume=99&rft.issue=11&rft.artnum=115419&rft.issn=2469-9950&rft.eissn=2469-9969&rft_id=info:doi/10.1103/PhysRevB.99.115419&rft_dat=%3Cproquest_cross%3E2209978574%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2209978574&rft_id=info:pmid/&rfr_iscdi=true |