Signatures of multiple jumps in surface diffusion on honeycomb surfaces

The jump distribution, a property of the motion of adsorbates on a corrugated surface, contains crucial information on adsorbate-substrate energy dissipation processes. To provide a means to study jump distributions in a honeycomb array of adsorption sites, we derive analytical expressions for the i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. B 2019-03, Vol.99 (11), Article 115419
Hauptverfasser: Townsend, Peter S. M., Avidor, Nadav
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 11
container_start_page
container_title Physical review. B
container_volume 99
creator Townsend, Peter S. M.
Avidor, Nadav
description The jump distribution, a property of the motion of adsorbates on a corrugated surface, contains crucial information on adsorbate-substrate energy dissipation processes. To provide a means to study jump distributions in a honeycomb array of adsorption sites, we derive analytical expressions for the intermediate scattering function (ISF) describing jump diffusion taking into account jumps up to fourth-nearest neighbor in length. To enable testing the analytical expressions against experimental or simulated data, we develop a global fitting routine that can be applied to experimental or simulated ISFs to infer multiple jumps. We demonstrate the analysis method by studying the jump distribution arising from classical Langevin molecular dynamics simulations of two model systems, cyclopentadienyl (Cp) on Cu(111), and deuterium (D) on Pd(111). The simulations and analysis confirm that diffusion of Cp/Cu(111) at a surface temperature T s = 135 K takes place in a regime of predominantly single jumps. Classical simulations of D/Pd(111) at T s = 350 K, with a realistic Langevin friction, suggest that the diffusion of D/Pd(111) involves a high proportion of multiple jumps. The parameters that apply to D/Pd(111) are typical of the interaction of hydrogen atoms with close-packed transition metal surfaces, suggesting that long jumps are a general feature of the high temperature surface diffusion of hydrogen.
doi_str_mv 10.1103/PhysRevB.99.115419
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2209978574</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2209978574</sourcerecordid><originalsourceid>FETCH-LOGICAL-c275t-579b31b2f8b51800c262a0a1529acdc22a7a85d6787ea001e7cb9e4908a3dd343</originalsourceid><addsrcrecordid>eNo9kG9LwzAQxoMoOOa-gK8Kvu68pE3Te6lDpzBQ_PM6pGniOtamJo2wb29HnXDwHHcP9xw_Qq4pLCmF7PZ1ewhv5ud-iTgOeE7xjMxYXmCKWOD5f8_hkixC2AEALQAF4Iys35uvTg3Rm5A4m7RxPzT93iS72PYhabokRG-VNkndWBtD47pkrK3rzEG7tjqtwxW5sGofzOJP5-Tz8eFj9ZRuXtbPq7tNqpngQ8oFVhmtmC0rTksAzQqmQFHOUOlaM6aEKnldiFIYNb5phK7Q5Ailyuo6y7M5uZnu9t59RxMGuXPRd2OkZAwQRcnF0cUml_YuBG-s7H3TKn-QFOSRmTwxk4hyYpb9As74YSs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2209978574</pqid></control><display><type>article</type><title>Signatures of multiple jumps in surface diffusion on honeycomb surfaces</title><source>American Physical Society Journals</source><creator>Townsend, Peter S. M. ; Avidor, Nadav</creator><creatorcontrib>Townsend, Peter S. M. ; Avidor, Nadav</creatorcontrib><description>The jump distribution, a property of the motion of adsorbates on a corrugated surface, contains crucial information on adsorbate-substrate energy dissipation processes. To provide a means to study jump distributions in a honeycomb array of adsorption sites, we derive analytical expressions for the intermediate scattering function (ISF) describing jump diffusion taking into account jumps up to fourth-nearest neighbor in length. To enable testing the analytical expressions against experimental or simulated data, we develop a global fitting routine that can be applied to experimental or simulated ISFs to infer multiple jumps. We demonstrate the analysis method by studying the jump distribution arising from classical Langevin molecular dynamics simulations of two model systems, cyclopentadienyl (Cp) on Cu(111), and deuterium (D) on Pd(111). The simulations and analysis confirm that diffusion of Cp/Cu(111) at a surface temperature T s = 135 K takes place in a regime of predominantly single jumps. Classical simulations of D/Pd(111) at T s = 350 K, with a realistic Langevin friction, suggest that the diffusion of D/Pd(111) involves a high proportion of multiple jumps. The parameters that apply to D/Pd(111) are typical of the interaction of hydrogen atoms with close-packed transition metal surfaces, suggesting that long jumps are a general feature of the high temperature surface diffusion of hydrogen.</description><identifier>ISSN: 2469-9950</identifier><identifier>EISSN: 2469-9969</identifier><identifier>DOI: 10.1103/PhysRevB.99.115419</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Adsorbates ; Computer simulation ; Deuterium ; Diffusion ; Energy dissipation ; Exact solutions ; High temperature ; Honeycomb construction ; Hydrogen atoms ; Metal surfaces ; Molecular dynamics ; Palladium ; Scattering functions ; Simulation ; Substrates ; Surface diffusion ; Transition metals</subject><ispartof>Physical review. B, 2019-03, Vol.99 (11), Article 115419</ispartof><rights>Copyright American Physical Society Mar 15, 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c275t-579b31b2f8b51800c262a0a1529acdc22a7a85d6787ea001e7cb9e4908a3dd343</citedby><cites>FETCH-LOGICAL-c275t-579b31b2f8b51800c262a0a1529acdc22a7a85d6787ea001e7cb9e4908a3dd343</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,2877,2878,27929,27930</link.rule.ids></links><search><creatorcontrib>Townsend, Peter S. M.</creatorcontrib><creatorcontrib>Avidor, Nadav</creatorcontrib><title>Signatures of multiple jumps in surface diffusion on honeycomb surfaces</title><title>Physical review. B</title><description>The jump distribution, a property of the motion of adsorbates on a corrugated surface, contains crucial information on adsorbate-substrate energy dissipation processes. To provide a means to study jump distributions in a honeycomb array of adsorption sites, we derive analytical expressions for the intermediate scattering function (ISF) describing jump diffusion taking into account jumps up to fourth-nearest neighbor in length. To enable testing the analytical expressions against experimental or simulated data, we develop a global fitting routine that can be applied to experimental or simulated ISFs to infer multiple jumps. We demonstrate the analysis method by studying the jump distribution arising from classical Langevin molecular dynamics simulations of two model systems, cyclopentadienyl (Cp) on Cu(111), and deuterium (D) on Pd(111). The simulations and analysis confirm that diffusion of Cp/Cu(111) at a surface temperature T s = 135 K takes place in a regime of predominantly single jumps. Classical simulations of D/Pd(111) at T s = 350 K, with a realistic Langevin friction, suggest that the diffusion of D/Pd(111) involves a high proportion of multiple jumps. The parameters that apply to D/Pd(111) are typical of the interaction of hydrogen atoms with close-packed transition metal surfaces, suggesting that long jumps are a general feature of the high temperature surface diffusion of hydrogen.</description><subject>Adsorbates</subject><subject>Computer simulation</subject><subject>Deuterium</subject><subject>Diffusion</subject><subject>Energy dissipation</subject><subject>Exact solutions</subject><subject>High temperature</subject><subject>Honeycomb construction</subject><subject>Hydrogen atoms</subject><subject>Metal surfaces</subject><subject>Molecular dynamics</subject><subject>Palladium</subject><subject>Scattering functions</subject><subject>Simulation</subject><subject>Substrates</subject><subject>Surface diffusion</subject><subject>Transition metals</subject><issn>2469-9950</issn><issn>2469-9969</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9kG9LwzAQxoMoOOa-gK8Kvu68pE3Te6lDpzBQ_PM6pGniOtamJo2wb29HnXDwHHcP9xw_Qq4pLCmF7PZ1ewhv5ud-iTgOeE7xjMxYXmCKWOD5f8_hkixC2AEALQAF4Iys35uvTg3Rm5A4m7RxPzT93iS72PYhabokRG-VNkndWBtD47pkrK3rzEG7tjqtwxW5sGofzOJP5-Tz8eFj9ZRuXtbPq7tNqpngQ8oFVhmtmC0rTksAzQqmQFHOUOlaM6aEKnldiFIYNb5phK7Q5Ailyuo6y7M5uZnu9t59RxMGuXPRd2OkZAwQRcnF0cUml_YuBG-s7H3TKn-QFOSRmTwxk4hyYpb9As74YSs</recordid><startdate>20190313</startdate><enddate>20190313</enddate><creator>Townsend, Peter S. M.</creator><creator>Avidor, Nadav</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20190313</creationdate><title>Signatures of multiple jumps in surface diffusion on honeycomb surfaces</title><author>Townsend, Peter S. M. ; Avidor, Nadav</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c275t-579b31b2f8b51800c262a0a1529acdc22a7a85d6787ea001e7cb9e4908a3dd343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adsorbates</topic><topic>Computer simulation</topic><topic>Deuterium</topic><topic>Diffusion</topic><topic>Energy dissipation</topic><topic>Exact solutions</topic><topic>High temperature</topic><topic>Honeycomb construction</topic><topic>Hydrogen atoms</topic><topic>Metal surfaces</topic><topic>Molecular dynamics</topic><topic>Palladium</topic><topic>Scattering functions</topic><topic>Simulation</topic><topic>Substrates</topic><topic>Surface diffusion</topic><topic>Transition metals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Townsend, Peter S. M.</creatorcontrib><creatorcontrib>Avidor, Nadav</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Townsend, Peter S. M.</au><au>Avidor, Nadav</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Signatures of multiple jumps in surface diffusion on honeycomb surfaces</atitle><jtitle>Physical review. B</jtitle><date>2019-03-13</date><risdate>2019</risdate><volume>99</volume><issue>11</issue><artnum>115419</artnum><issn>2469-9950</issn><eissn>2469-9969</eissn><abstract>The jump distribution, a property of the motion of adsorbates on a corrugated surface, contains crucial information on adsorbate-substrate energy dissipation processes. To provide a means to study jump distributions in a honeycomb array of adsorption sites, we derive analytical expressions for the intermediate scattering function (ISF) describing jump diffusion taking into account jumps up to fourth-nearest neighbor in length. To enable testing the analytical expressions against experimental or simulated data, we develop a global fitting routine that can be applied to experimental or simulated ISFs to infer multiple jumps. We demonstrate the analysis method by studying the jump distribution arising from classical Langevin molecular dynamics simulations of two model systems, cyclopentadienyl (Cp) on Cu(111), and deuterium (D) on Pd(111). The simulations and analysis confirm that diffusion of Cp/Cu(111) at a surface temperature T s = 135 K takes place in a regime of predominantly single jumps. Classical simulations of D/Pd(111) at T s = 350 K, with a realistic Langevin friction, suggest that the diffusion of D/Pd(111) involves a high proportion of multiple jumps. The parameters that apply to D/Pd(111) are typical of the interaction of hydrogen atoms with close-packed transition metal surfaces, suggesting that long jumps are a general feature of the high temperature surface diffusion of hydrogen.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevB.99.115419</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2469-9950
ispartof Physical review. B, 2019-03, Vol.99 (11), Article 115419
issn 2469-9950
2469-9969
language eng
recordid cdi_proquest_journals_2209978574
source American Physical Society Journals
subjects Adsorbates
Computer simulation
Deuterium
Diffusion
Energy dissipation
Exact solutions
High temperature
Honeycomb construction
Hydrogen atoms
Metal surfaces
Molecular dynamics
Palladium
Scattering functions
Simulation
Substrates
Surface diffusion
Transition metals
title Signatures of multiple jumps in surface diffusion on honeycomb surfaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T15%3A11%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Signatures%20of%20multiple%20jumps%20in%20surface%20diffusion%20on%20honeycomb%20surfaces&rft.jtitle=Physical%20review.%20B&rft.au=Townsend,%20Peter%20S.%20M.&rft.date=2019-03-13&rft.volume=99&rft.issue=11&rft.artnum=115419&rft.issn=2469-9950&rft.eissn=2469-9969&rft_id=info:doi/10.1103/PhysRevB.99.115419&rft_dat=%3Cproquest_cross%3E2209978574%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2209978574&rft_id=info:pmid/&rfr_iscdi=true