Tubule Nanoclay‐Organic Heterostructures for Biomedical Applications
Natural halloysite nanotubes (HNTs) show unique hollow structure, high aspect ratio and adsorption ability, good biocompatibility, and low toxicity, which allow for various biomedical applications in the diagnosis and treatment of diseases. Here, advances in self‐assembly of halloysite for cell capt...
Gespeichert in:
Veröffentlicht in: | Macromolecular bioscience 2019-04, Vol.19 (4), p.e1800419-n/a |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 4 |
container_start_page | e1800419 |
container_title | Macromolecular bioscience |
container_volume | 19 |
creator | Liu, Mingxian Fakhrullin, Rawil Novikov, Andrei Panchal, Abhishek Lvov, Yuri |
description | Natural halloysite nanotubes (HNTs) show unique hollow structure, high aspect ratio and adsorption ability, good biocompatibility, and low toxicity, which allow for various biomedical applications in the diagnosis and treatment of diseases. Here, advances in self‐assembly of halloysite for cell capturing and bacterial proliferation, coating on biological surfaces and related drug delivery, bone regeneration, bioscaffolds, and cell labeling are summarized. The in vivo toxicity of these clay nanotubes is discussed. Halloysite allows for 10–20% drug loading and can extend the delivery time to 10–100 h. These drug‐loaded nanotubes are doped into the polymer scaffolds to release the loaded drugs. The rough surfaces fabricated by self‐assembly of the clay nanotubes enhance the interactions with tumor cells, and the cell capture efficacy is significantly improved. Since halloysite has no toxicity toward microorganisms, the bacteria composed within these nanotubes can be explored in oil/water emulsion for petroleum spilling bioremediation. Coating of living cells with halloysite can control the cell growth and is not harmful to their viability. Quantum dots immobilized on halloysite were employed for cell labeling and imaging. The concluding academic results combined with the abundant availability of these natural nanotubes promise halloysite applications in personal healthcare and environmental remediation.
Naturally occurring halloysite nanotubes show great potential in biomedical areas, since they possess high aspect ratio, high mechanical properties, high stability, good adsorption ability, and biocompatibility (low toxicity). The applications of these clay nanotubes include sustained drug delivery, tissue scaffold engineering, wound healing dressing, cell capture substrates, biosensors, cell labeling, and bacterial proliferation substrates. |
doi_str_mv | 10.1002/mabi.201800419 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2209952014</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2209952014</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4769-4d1fded2275e40f477d01eba9db7623341613ba2c5c2f3f9a0a7520456433c0d3</originalsourceid><addsrcrecordid>eNqFkL1OwzAUhS0EoqWwMqJIzCnXf3E9thWllQpdymw5joNSpUmwE6FuPALPyJPgqqWMTPcM3z333IPQLYYhBiAPW50WQwJ4BMCwPEN9nOAk5ljy85MeiR668n4DgMVIkkvUo8ATTiXro9m6S7vSRi-6qk2pd9-fXyv3pqvCRHPbWlf71nWm7Zz1UV67aFLUW5sVRpfRuGnKINqirvw1ush16e3NcQ7Q6-xxPZ3Hy9XTYjpexoaJRMYsw3lmM0IEtwxyJkQG2KZaZqlICKUsJKapJoYbktNcatCCE2A8YZQayOgA3R98G1e_d9a3alN3rgonFSEgZYAxC9TwQJmQ3zubq8YVW-12CoPa16b2talTbWHh7mjbpeG9E_7bUwDkAfgoSrv7x049jyeLP_Mf0DJ54Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2209952014</pqid></control><display><type>article</type><title>Tubule Nanoclay‐Organic Heterostructures for Biomedical Applications</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Liu, Mingxian ; Fakhrullin, Rawil ; Novikov, Andrei ; Panchal, Abhishek ; Lvov, Yuri</creator><creatorcontrib>Liu, Mingxian ; Fakhrullin, Rawil ; Novikov, Andrei ; Panchal, Abhishek ; Lvov, Yuri</creatorcontrib><description>Natural halloysite nanotubes (HNTs) show unique hollow structure, high aspect ratio and adsorption ability, good biocompatibility, and low toxicity, which allow for various biomedical applications in the diagnosis and treatment of diseases. Here, advances in self‐assembly of halloysite for cell capturing and bacterial proliferation, coating on biological surfaces and related drug delivery, bone regeneration, bioscaffolds, and cell labeling are summarized. The in vivo toxicity of these clay nanotubes is discussed. Halloysite allows for 10–20% drug loading and can extend the delivery time to 10–100 h. These drug‐loaded nanotubes are doped into the polymer scaffolds to release the loaded drugs. The rough surfaces fabricated by self‐assembly of the clay nanotubes enhance the interactions with tumor cells, and the cell capture efficacy is significantly improved. Since halloysite has no toxicity toward microorganisms, the bacteria composed within these nanotubes can be explored in oil/water emulsion for petroleum spilling bioremediation. Coating of living cells with halloysite can control the cell growth and is not harmful to their viability. Quantum dots immobilized on halloysite were employed for cell labeling and imaging. The concluding academic results combined with the abundant availability of these natural nanotubes promise halloysite applications in personal healthcare and environmental remediation.
Naturally occurring halloysite nanotubes show great potential in biomedical areas, since they possess high aspect ratio, high mechanical properties, high stability, good adsorption ability, and biocompatibility (low toxicity). The applications of these clay nanotubes include sustained drug delivery, tissue scaffold engineering, wound healing dressing, cell capture substrates, biosensors, cell labeling, and bacterial proliferation substrates.</description><identifier>ISSN: 1616-5187</identifier><identifier>EISSN: 1616-5195</identifier><identifier>DOI: 10.1002/mabi.201800419</identifier><identifier>PMID: 30565394</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Assembly ; Biocompatibility ; Biomedical materials ; Bioremediation ; Bone growth ; Clay ; Drug delivery ; Drug delivery systems ; Environmental cleanup ; halloysite nanotubes ; Heterostructures ; High aspect ratio ; Labeling ; Mechanical loading ; Medical treatment ; Microorganisms ; Nanotechnology ; Nanotubes ; Polymers ; Quantum dots ; Regeneration ; Regeneration (physiology) ; self‐assembly ; Toxicity ; Tumor cells ; Viability</subject><ispartof>Macromolecular bioscience, 2019-04, Vol.19 (4), p.e1800419-n/a</ispartof><rights>2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><rights>2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4769-4d1fded2275e40f477d01eba9db7623341613ba2c5c2f3f9a0a7520456433c0d3</citedby><cites>FETCH-LOGICAL-c4769-4d1fded2275e40f477d01eba9db7623341613ba2c5c2f3f9a0a7520456433c0d3</cites><orcidid>0000-0002-5466-3024 ; 0000-0003-0722-5643</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmabi.201800419$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmabi.201800419$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30565394$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Mingxian</creatorcontrib><creatorcontrib>Fakhrullin, Rawil</creatorcontrib><creatorcontrib>Novikov, Andrei</creatorcontrib><creatorcontrib>Panchal, Abhishek</creatorcontrib><creatorcontrib>Lvov, Yuri</creatorcontrib><title>Tubule Nanoclay‐Organic Heterostructures for Biomedical Applications</title><title>Macromolecular bioscience</title><addtitle>Macromol Biosci</addtitle><description>Natural halloysite nanotubes (HNTs) show unique hollow structure, high aspect ratio and adsorption ability, good biocompatibility, and low toxicity, which allow for various biomedical applications in the diagnosis and treatment of diseases. Here, advances in self‐assembly of halloysite for cell capturing and bacterial proliferation, coating on biological surfaces and related drug delivery, bone regeneration, bioscaffolds, and cell labeling are summarized. The in vivo toxicity of these clay nanotubes is discussed. Halloysite allows for 10–20% drug loading and can extend the delivery time to 10–100 h. These drug‐loaded nanotubes are doped into the polymer scaffolds to release the loaded drugs. The rough surfaces fabricated by self‐assembly of the clay nanotubes enhance the interactions with tumor cells, and the cell capture efficacy is significantly improved. Since halloysite has no toxicity toward microorganisms, the bacteria composed within these nanotubes can be explored in oil/water emulsion for petroleum spilling bioremediation. Coating of living cells with halloysite can control the cell growth and is not harmful to their viability. Quantum dots immobilized on halloysite were employed for cell labeling and imaging. The concluding academic results combined with the abundant availability of these natural nanotubes promise halloysite applications in personal healthcare and environmental remediation.
Naturally occurring halloysite nanotubes show great potential in biomedical areas, since they possess high aspect ratio, high mechanical properties, high stability, good adsorption ability, and biocompatibility (low toxicity). The applications of these clay nanotubes include sustained drug delivery, tissue scaffold engineering, wound healing dressing, cell capture substrates, biosensors, cell labeling, and bacterial proliferation substrates.</description><subject>Assembly</subject><subject>Biocompatibility</subject><subject>Biomedical materials</subject><subject>Bioremediation</subject><subject>Bone growth</subject><subject>Clay</subject><subject>Drug delivery</subject><subject>Drug delivery systems</subject><subject>Environmental cleanup</subject><subject>halloysite nanotubes</subject><subject>Heterostructures</subject><subject>High aspect ratio</subject><subject>Labeling</subject><subject>Mechanical loading</subject><subject>Medical treatment</subject><subject>Microorganisms</subject><subject>Nanotechnology</subject><subject>Nanotubes</subject><subject>Polymers</subject><subject>Quantum dots</subject><subject>Regeneration</subject><subject>Regeneration (physiology)</subject><subject>self‐assembly</subject><subject>Toxicity</subject><subject>Tumor cells</subject><subject>Viability</subject><issn>1616-5187</issn><issn>1616-5195</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkL1OwzAUhS0EoqWwMqJIzCnXf3E9thWllQpdymw5joNSpUmwE6FuPALPyJPgqqWMTPcM3z333IPQLYYhBiAPW50WQwJ4BMCwPEN9nOAk5ljy85MeiR668n4DgMVIkkvUo8ATTiXro9m6S7vSRi-6qk2pd9-fXyv3pqvCRHPbWlf71nWm7Zz1UV67aFLUW5sVRpfRuGnKINqirvw1ush16e3NcQ7Q6-xxPZ3Hy9XTYjpexoaJRMYsw3lmM0IEtwxyJkQG2KZaZqlICKUsJKapJoYbktNcatCCE2A8YZQayOgA3R98G1e_d9a3alN3rgonFSEgZYAxC9TwQJmQ3zubq8YVW-12CoPa16b2talTbWHh7mjbpeG9E_7bUwDkAfgoSrv7x049jyeLP_Mf0DJ54Q</recordid><startdate>201904</startdate><enddate>201904</enddate><creator>Liu, Mingxian</creator><creator>Fakhrullin, Rawil</creator><creator>Novikov, Andrei</creator><creator>Panchal, Abhishek</creator><creator>Lvov, Yuri</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0002-5466-3024</orcidid><orcidid>https://orcid.org/0000-0003-0722-5643</orcidid></search><sort><creationdate>201904</creationdate><title>Tubule Nanoclay‐Organic Heterostructures for Biomedical Applications</title><author>Liu, Mingxian ; Fakhrullin, Rawil ; Novikov, Andrei ; Panchal, Abhishek ; Lvov, Yuri</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4769-4d1fded2275e40f477d01eba9db7623341613ba2c5c2f3f9a0a7520456433c0d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Assembly</topic><topic>Biocompatibility</topic><topic>Biomedical materials</topic><topic>Bioremediation</topic><topic>Bone growth</topic><topic>Clay</topic><topic>Drug delivery</topic><topic>Drug delivery systems</topic><topic>Environmental cleanup</topic><topic>halloysite nanotubes</topic><topic>Heterostructures</topic><topic>High aspect ratio</topic><topic>Labeling</topic><topic>Mechanical loading</topic><topic>Medical treatment</topic><topic>Microorganisms</topic><topic>Nanotechnology</topic><topic>Nanotubes</topic><topic>Polymers</topic><topic>Quantum dots</topic><topic>Regeneration</topic><topic>Regeneration (physiology)</topic><topic>self‐assembly</topic><topic>Toxicity</topic><topic>Tumor cells</topic><topic>Viability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Mingxian</creatorcontrib><creatorcontrib>Fakhrullin, Rawil</creatorcontrib><creatorcontrib>Novikov, Andrei</creatorcontrib><creatorcontrib>Panchal, Abhishek</creatorcontrib><creatorcontrib>Lvov, Yuri</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Macromolecular bioscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Mingxian</au><au>Fakhrullin, Rawil</au><au>Novikov, Andrei</au><au>Panchal, Abhishek</au><au>Lvov, Yuri</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tubule Nanoclay‐Organic Heterostructures for Biomedical Applications</atitle><jtitle>Macromolecular bioscience</jtitle><addtitle>Macromol Biosci</addtitle><date>2019-04</date><risdate>2019</risdate><volume>19</volume><issue>4</issue><spage>e1800419</spage><epage>n/a</epage><pages>e1800419-n/a</pages><issn>1616-5187</issn><eissn>1616-5195</eissn><abstract>Natural halloysite nanotubes (HNTs) show unique hollow structure, high aspect ratio and adsorption ability, good biocompatibility, and low toxicity, which allow for various biomedical applications in the diagnosis and treatment of diseases. Here, advances in self‐assembly of halloysite for cell capturing and bacterial proliferation, coating on biological surfaces and related drug delivery, bone regeneration, bioscaffolds, and cell labeling are summarized. The in vivo toxicity of these clay nanotubes is discussed. Halloysite allows for 10–20% drug loading and can extend the delivery time to 10–100 h. These drug‐loaded nanotubes are doped into the polymer scaffolds to release the loaded drugs. The rough surfaces fabricated by self‐assembly of the clay nanotubes enhance the interactions with tumor cells, and the cell capture efficacy is significantly improved. Since halloysite has no toxicity toward microorganisms, the bacteria composed within these nanotubes can be explored in oil/water emulsion for petroleum spilling bioremediation. Coating of living cells with halloysite can control the cell growth and is not harmful to their viability. Quantum dots immobilized on halloysite were employed for cell labeling and imaging. The concluding academic results combined with the abundant availability of these natural nanotubes promise halloysite applications in personal healthcare and environmental remediation.
Naturally occurring halloysite nanotubes show great potential in biomedical areas, since they possess high aspect ratio, high mechanical properties, high stability, good adsorption ability, and biocompatibility (low toxicity). The applications of these clay nanotubes include sustained drug delivery, tissue scaffold engineering, wound healing dressing, cell capture substrates, biosensors, cell labeling, and bacterial proliferation substrates.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>30565394</pmid><doi>10.1002/mabi.201800419</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-5466-3024</orcidid><orcidid>https://orcid.org/0000-0003-0722-5643</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-5187 |
ispartof | Macromolecular bioscience, 2019-04, Vol.19 (4), p.e1800419-n/a |
issn | 1616-5187 1616-5195 |
language | eng |
recordid | cdi_proquest_journals_2209952014 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Assembly Biocompatibility Biomedical materials Bioremediation Bone growth Clay Drug delivery Drug delivery systems Environmental cleanup halloysite nanotubes Heterostructures High aspect ratio Labeling Mechanical loading Medical treatment Microorganisms Nanotechnology Nanotubes Polymers Quantum dots Regeneration Regeneration (physiology) self‐assembly Toxicity Tumor cells Viability |
title | Tubule Nanoclay‐Organic Heterostructures for Biomedical Applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T19%3A09%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tubule%20Nanoclay%E2%80%90Organic%20Heterostructures%20for%20Biomedical%20Applications&rft.jtitle=Macromolecular%20bioscience&rft.au=Liu,%20Mingxian&rft.date=2019-04&rft.volume=19&rft.issue=4&rft.spage=e1800419&rft.epage=n/a&rft.pages=e1800419-n/a&rft.issn=1616-5187&rft.eissn=1616-5195&rft_id=info:doi/10.1002/mabi.201800419&rft_dat=%3Cproquest_cross%3E2209952014%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2209952014&rft_id=info:pmid/30565394&rfr_iscdi=true |